A Simple Dynamic Bandit Algorithm for Hyper-parameter Tuning

Xuedong Shang1,2, Emilie Kaufmann1,2,3, Michal Valko4,1

1Inria Sequel 2Univ. Lille 3CNRS 4DeepMind Paris

Problem and Objectives

We treat the hyper-parameter tuning problem for supervised learning tasks.

- global optimisation task: \(\min \{ f(\lambda) : \lambda \in \Omega \} \);
- \(f(\lambda) \triangleq \mathbb{E} \{ Y, \mathcal{g}_\lambda(X) \} \) measures the generalization power.

Our contribution: a simple, robust, (almost) parameter-free bandit algorithm.

How and Why

How?

We see the problem as best arm identification in a stochastic infinitely-armed bandit: arms' means are drawn from some reservoir distribution \(\nu_0 \).

\(\nu_0 \) is observed, the algorithm is updated with a fake binary reward \(Y' \sim \text{Ber}(Y) \) and run TTTS on the new set of arms.

Why?

- \texttt{TTTS} is anytime for finitely-armed bandits
- \texttt{TTTS} is dynamic for the flexibility of this Bayesian algorithm allows to propose a dynamic version for the infinite BAI
- \texttt{TTTS} does not need to fix the number of arms queried in advance, and naturally adapts to the difficulty of the task

D-TTTS \(\Rightarrow \) a dynamic algorithm built on TTTS [1]

In the Context of BAI...

- **Beta-Bernoulli** Bayesian bandit model
 - a uniform prior over the mean of new arms
 - Posterior distribution on arm \(i \) at time \(t \):
 \[\text{Beta}(1 + S_i, N_i - S_i + 1). \]

D-TTTS principle: in each round, query a new arm endowed with a \(\text{Beta}(1,1) \) prior, without sampling it, and run TTTS on the new set of arms.

Implementation tricks

Binarization trick: When a reward \(Y_{ij} \in [0,1] \) is observed, the algorithm is updated with a fake binary reward \(Y' \sim \text{Ber}(Y) \).

Order statistic trick: with \(\mathcal{L}_{t-1} \), the list of arms that have been effectively sampled at time \(t \), we run TTTS on the set \(\mathcal{L}_{t-1} \cup \{ \mu_0 \} \) where \(\mu_0 \) is a pseudo-arm with posterior \(\text{Beta}(t-|\mathcal{L}_{t-1}|,1) \).

Experimental Setting

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Hyper-parameter Type</th>
<th>Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>(C)</td>
<td>(\mathbb{R}^+)</td>
</tr>
<tr>
<td>SVM</td>
<td>(\gamma)</td>
<td>(\mathbb{R}^+)</td>
</tr>
<tr>
<td>MLP</td>
<td>hidden_layer_size</td>
<td>Integer</td>
</tr>
<tr>
<td>MLP</td>
<td>alpha</td>
<td>(\mathbb{R}^+)</td>
</tr>
<tr>
<td>MLP</td>
<td>learning_rate_init</td>
<td>(\mathbb{R}^+)</td>
</tr>
</tbody>
</table>

Table: hyper-parameters to be tuned for UCI experiments.

Sampling Rule

1. **Input**: \(\beta \)
2. **Initialization**: \(\mu_1 \sim \nu_0; \mathcal{A} = \{ \mu_1 \}; S_i, N_i = 0 \)
3. **while** budget still available **do**
4. \(\mu_{m+1} \sim \nu_0; \mathcal{A} \leftarrow \mathcal{A} \cup \{ \mu_{m+1} \} \)
5. \(S_{m+1}, N_{m+1} \leftarrow 0; m \leftarrow m + 1 \)
6. \(\forall i \in \mathcal{A}, \theta_i \sim \text{Beta}(S_i + 1, N_i - S_i + 1) \)
7. \(I^{(1)} = \arg \max_{\theta \in \Theta} \theta_i \)
8. **if** \(U(\sim \mathcal{U}([0,1])) > \beta \) **then**
9. **while** \(I^{(2)} \neq I^{(1)} \) **do**
10. **forall** \(i \in \mathcal{A}, \theta_i' \sim \text{Beta}(S_i + 1, N_i - S_i + 1) \)
11. \(I^{(2)} \leftarrow \arg \max_{\theta' \in \Theta} \theta_i' \)
12. **end while**
13. **end if**
14. \(Y \leftarrow \text{evaluate arm } I^{(1)}, X \sim \text{Ber}(Y) \)
15. \(S_{p(1)} \leftarrow S_{p(1)} + X; N_{p(1)} \leftarrow N_{p(1)} + 1 \)
16. **end while**

Understanding the Algorithm

Adaptation to the difficulty: for a 'difficult' reservoir, the pseudo-arm \(\mu_0 \) is sampled more often (i.e. more arms are effectively sampled)

Results for HPO

- \(\Rightarrow \) efficiently sampled arms for \(\text{Beta}(1,1) \) reservoirs:
- \(\Rightarrow \) efficiently sampled arms for shifted \(\text{Beta} \) reservoirs:

References

Inria

DeepMind Paris