
Master research Internship

Internship report

Hierarchical Bandits for "Black Box" Optimization

Domain: Optimization - Machine Learning

Author:
Xuedong Shang

Supervisor:
Emilie Kaufmann

Michal Valko
SequeL - Inria Lille



Abstract Heuristics like Monte-Carlo Tree Search (MCTS), which trades off well exploration
and exploitation, are widely used for sequential global optimization problems, and has led to some
great success especially in game AI designing. In many cases, the exploration phase follows the
famous optimism in the face of uncertainty principle, which is encountered in the so-called multi-
armed bandit problem. However, recent studies on these models shows that they are not optimal
for the optimization purpose, and that methods based on best arm identification are preferred.
During this internship, some approaches based on these new statistic tools are investigated both in
a practical and theoretical way.

Keywords —- reinforcement learning, global optimization, multi-armed bandits, simple regret,
cumulative regret, hyperparameter optimization.

Contents

Introduction 1

1 Multi-armed Bandit Problem 2
1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 UCB Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Hierarchical Optimization 4
2.1 Hierarchical Optimistic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 HOO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Parallel Optimistic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 POO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 High-Confidence Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 HCT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Bayesian Optimization 13
3.1 The Bayesian Optimization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Priors over Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Acquisition Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Probability of Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Expected Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.3 GP-UCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.4 Optimization of the Acquisition Function . . . . . . . . . . . . . . . . . . . . 19

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



4 Implementations and Experiments 20
4.1 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Synthetic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Applications to Hyper-parameter Optimization for Machine Learning . . . . . . . . . 21

4.3.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2 Benchmark Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.4 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Conclusion 30

Acknowledgement 32

Appendices 35
A Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B Regret Analysis for HCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
C Conditional Distributions of A Multivariate Gaussian Distribution . . . . . . . . . . 44



Introduction

Sequential global optimization consists in optimizing some complicated function by using a sequence
of (noisy) observations of this function. Optimization could be for example maximization of a reward
or minimization of a cost. It is a crucial problem in many different domains such as biology and
chemistry Floudas and Pardalos 2000, engineering Wang and Shan 2007, bioinformatics Moles et al.
2003, finance Ziemba and Vickson 2006, etc. In these cases, we often do not make extra hypothesis
on the regularity of the function we want to optimize (so-called "black box"). Thus it can be very
costly to evaluate the function and a good strategy for choosing the next observation is needed so
that we can find the optimum as quickly as possible. Recently, this kind of black box optimization
is motivated in particular by applications in automatic hyper-parameter configuration of machine
learning algorithms Hoffman et al. 2014, Li et al. 2016.

In the past few years, such optimization algorithms have been widely inspired by literature of
multi-armed bandit models. These algorithms are based on a hierarchical exploration (in a tree
form) of the domain of the function, with the help of the optimism principle for choosing which part
of the tree to explore. This work brought some breakthroughs especially in the field of AI designing,
e.g. for the game of Go Silver et al. 2016.

A simple way to describe the multi-armed bandit scenario is to consider K arms labeled by
integers from 1 to K. Each arm k ∈ {1, . . . ,K} is characterized by an unknown distribution νk. At
each step t, an arm kt is selected and some reward rt ∼ νkt is returned. The optimism principle is
used when we are interested in maximizing the sum of rewards. Meanwhile, another objective could
have been preferred, which is to decide as quickly as possible which arm has the highest reward
on average. Recent works showed that optimal algorithms for this kind of best arm identification
problems are totally different from those for reward maximization problems.

Dealing with the sequential global optimization problem using the hierarchical exploration with
the help of best arm identification techniques instead of the classic optimistic approaches has raised
much attention recently. For instance, most existing algorithms for the MCTS problem are variants
of the Upper-Confidence Tree (UCT) algorithm in Kocsis and Szepesvári 2006 in which the explo-
ration phase follows the optimism in the face of uncertainty principle. The goal is to use a different
approach, in which the exploration phase will be based on a process of best arm identification, like
LUCB Kalyanakrishnan et al. 2012. Several methods can be considered for this purpose, in particu-
lar methods of hierarchical optimization (e.g. hierarchical optimistic optimization Grill et al. 2015,
Bubeck et al. 2011) and methods using Gaussian processes (e.g. Bayesian optimization Brochu et al.
2010). The main objective of this internship is to investigate these two types of approaches and
their applications.

Contribution The contribution of this internship is twofolds:

(i) The theoretical part focuses on methods of hierarchical optimization. We show that milder
assumptions on the target function can be applied to one of the algorithms and we explain
why it is important.

(ii) Regarding the numerical part, we first compare hierarchical methods with Bayesian methods
which is rarely done before (for some reasons we explain later). Then we focus on their
application to hyper-parameter optimization problem.

1



Structure For the rest of this report, we begin by a more formal definition of the bandit problem
and some classic methods as well. Then we concentrate on black box optimization, for which
we present two kinds of methods: Bayesian optimization and hierarchical optimization. Finally, we
compare these techniques and discuss about how they can be used in the context of hyper-parameter
optimization for machine learning problems before concluding.

1 Multi-armed Bandit Problem

In this section, we formulate the bandit problem in a more rigorous way and present a classic
algorithm for this problem: Upper-Confidence Bound (UCB) algorithm Auer et al. 2002.

1.1 Problem Formulation

We consider K arms that follow K unknown [0, 1]-valued distributions (νk)1≤k≤K . At time t, a
player plays one arm kt ∈ {1, . . . ,K} and receives a reward rt ∼ νkt . Here xt is an independent
observation of the distribution corresponding to the chosen arm.

Let µk be the expectation of the unknown distribution νk and µ∗ be the expectation of the
optimal arm. Since the laws of each arm are unknown, one must explore every arm to collect
information, bu in the mean time one may want to exploit the most profitable arm as much as
possible. This is the famous exploration-exploitation dilemma.

A policy or an allocation strategy is an algorithm which chooses at step n an arm kn to play
based on the past plays. Sometimes, this allocation strategy is coupled with a recommendation
strategy, that selects an arm jn as a guess for the best arms (notice that jn can surely be different
from kn). A simple example of recommendation could be the arm with the highest empirical mean
until now.

In order to evaluate the performance of a given policy, two criteria related to the notion of regret
are proposed, which allow us to define the speed of convergence of the average reward obtained by
the policy towards the average optimal reward.

Definition 1 (Simple regret). At time n, a given policy which observes a sequence of rewards
(rt)1≤t≤n and recommendations (jt)1≤t≤n suffers from a simple regret:

Sn := µ∗ − µjn .

The simple regret measures the difference between the expected reward of the optimal arm and
the recommended arm at this moment. In practice, another criterion is often considered as well.

Definition 2 (Cumulative regret). At time n, a given policy which observes a sequence of rewards
(rt)1≤t≤n suffers from a cumulative regret:

Rn := nµ∗ −
∑

1≤t≤n
µkt .

The cumulative regret measures the difference between the expected cumulative reward obtained
by the optimal arm and the cumulative reward returned by the given policy.

We are particularly interested by the expectation of the cumulative regret E[Rn]. Let us denote
∆k = µ∗ − µk as the difference between the optimal arm and arm k and Tk(n) as the number of

2



times that arm k has been played until time n. Then the expectation of the cumulative regret can
be reformulated as follows:

E[Rn] = E

[
K∑
k=1

Tk(n)∆k

]
.

Basically speaking, a good policy for (cumulative) regret minimization should choose any sub-
optimal arm as rarely as possible.

Remark 1. It is easy to see that for any regret minimization strategy, results on cumulative regret
can be readily extended to simple regret if we choose some specific recommendation strategy. For
instance, at time n, if the algorithm recommends a sampled arm uniformly at random, then we
have:

E[Sn] ≤ E

[
Rn
n

]
.

1.2 UCB Algorithm

The UCB algorithm, popularized by Auer et al. 2002, is one of the first strategies that achieves a
uniform logarithmic regret over n and it follows the optimism in the face of uncertainty principle.
That is to say, despite lack of knowledge in which actions are best, we can still construct an optimistic
guess that picks an optimal arm in the most favorable environments that are compatible with the
observations. Here by “compatible environments” we mean the set of possible distributions of the
arms that are likely to have generated the observed rewards. The simplest version of UCB is given
below.

Algorithm 1: UCB1

Initialize: At first, the UCB policy pulls each arm once.
1 Loop: At time n+ 1, the UCB policy pulls the arm with largest B-values:

xn+1 ∈ arg max
1≤k≤K

B(n+1),Tk(n)(k),

where the B-value of an arm k is defined as:

Bt,s(k) := µ̂k,s +

√
3 log t

2s
,

where µ̂k,s is the average reward of the first s rewards obtained by arm k.

The policy above follows the optimism in the face of uncertainty principle and the B-values
defined are actually upper-confidence bounds on µk. Formally speaking, for the UCB algorithm, it
is proved that

P(Bt,s(k) ≥ µk) ≥ 1− t−3,∀s ∈ {1, . . . , t}.

This property is ensured by the famous Chernoff-Hoeffding inequality Hoeffding 1963. We can then
deduce an upper bound on the average number of times that a sub-optimal arm is played.

3



Proposition 3. Each sub-optimal arm k is played at most

E[Tn(k)] ≤ 6
log n

∆2
k

+
π2

3
+ 1

times on average.

The expectation of the cumulative regret can then be easily bounded as shown in the corollary
below.

Corollary 4. The cumulative regret of the UCB policy is bounded as

E[Rn] = E

[
K∑
k=1

Tk(n)∆k

]
=

K∑
k=1

∆kE[Tk(n)] ≤ 6
∑

∆k>0

log n

∆k
+K(

π2

3
+ 1).

UCB is quite simple to understand and implement, and it has a great influence on its successors.
The two terms introduced in the definition of B-value here actually represent a trade-off between
exploration and exploitation. And this is also the most crucial point to be taken into account while
designing other algorithms. Later in this report, we will see that all algorithms presented follow
this principle.
Remark 2. UCB aims at minimizing the cumulative regret (i.e. maximizing the reward), which
may not be an appropriate strategy in some circumstances. An alternative philosophy, say best arm
identification, can be considered as well. And this will also be our focus for the future work.

2 Hierarchical Optimization

In this section, we first reformulate the definitions given previously in the context of multi-armed
bandit problem in a more general way. We consider the problem of optimizing sequentially an
unknown noisy function f : X → R of which the cost of function evaluation is high.

At each step t, a strategy picks an action xt ∈ X and receives a reward rt = f(xt) + εt where εt
is the noise. After n steps, the strategy returns a guess for a point maximizing f , denoted by x(n)
(which is the counterpart of the recommended arm jn in the bandit case, which corresponds to a
finite set X ). We can then define the simple regret, which is also called optimization error in an
optimization setting, in the same way as in the bandit setting,

Sn := sup
x∈X

f(x)− f(x(n)).

Suppose that f reaches its upper bound, thus we can denote f∗ := f(x∗) = supx∈X f(x) throughout
the rest of this report. The cumulative regret is simply defined as

Rn :=
∑

1≤t≤n
(f(x∗)− f(xt)).

Notice that a desirable property of an optimization algorithm would be no-regret, i.e. limn→∞Rn/n =
0.

In the rest of this section as well as in the next one, two dominant types of approaches for
this problem are introduced, i.e. hierarchical optimization and Bayesian optimization. We present
different algorithms for each of these two types and we are particularly interested in their theoretical
guarantees.

4



Figure 1: Illustration of the node selection in round n. In this example, Bh+1,2i−1(n) > Bh+1,2i(n),
thus the current optimistic path includes the node (h+ 1, 2i− 1) rather than the node (h+ 1, 2i).

2.1 Hierarchical Optimistic Optimization

Indeed, the previous problem setting can be seen as a so-called X -armed bandits problem, which
means the set of arms X is allowed to be a generic measurable space. One of the solutions to this
problem is the hierarchical optimistic optimization (HOO) algorithm Bubeck et al. 2011. The main
idea of HOO is to exploit as much knowledge of f as possible around its maxima, while it does not
care a lot about other parts of the space. For that purpose, a tree-formed partitioning is proposed
such that nodes which are deeper in the tree represent smaller measurable sub-regions of X .

2.1.1 HOO Algorithm

HOO is an anytime algorithm that relies on a tree-formed hierarchical partitioning P = {Ph,i}
defined recursively as follows,

P0,1 = X ,

Ph,i = Ph+1,2i−1 ∪ Ph+1,2i.

As a corollary, at every depth h ≥ 0, all the nodes form a partition of the input space X ,

X =
2h⋃
i=1

Ph,i.

Remark 3. Here a simple example of binary tree partitioning is given, notice that each Ph,i can also
be split into several regions of the same size. In the rest of this section, we remain in this binary
tree situation for the sake of simplicity.

At each round of HOO, the function is evaluated at one point within an unexplored node at
some level h. And it always chooses the node whose B-value Bh,i(t) is the highest. Bh,i(t) is defined

5



Figure 2: Extracted from Bubeck et al. 2011, the tree built by HOO over 10,000 rounds of the
function x ∈ [0, 1] 7→ 1/2(sin(13x) sin(27x) + 1.

as follows,

Bh,i(t) :=

{
min{Uh,i(t),max{Bh+1,2i−1(t), Bh+1,2i(t)}} if (h, i) ∈ Tn
∞ otherwise

where Tn is the covering tree explored at step n and Uh,i(t) is defined as,

Uh,i(t) :=

{
µ̂h,i(t) +

√
2 ln(t)
Th,i(t)

+ νρh if Th,i(t) > 0

∞ otherwise

where µ̂h,i(t) is the empirical mean of all evaluations done in the cell Ph,i (and its descendants), and
Th,i(t) is the number of these evaluations. Here Uh,i(t) can be interpreted as an upper confidence
bound on f(x) where x ∈ Ph,i, and it is easy to see that Bh,i(t) is also an upper confidence bound,
but tighter.

HOO chooses a path from root to leaf that maximizes the minimum value Uh,i(t) among all
cells at level h. At the leaf, a new point is then sampled randomly. More details can be found in
Algorithm 2. Fig. 1 illustrates how HOO chooses its path and Fig. 2 shows the first 10, 000 rounds
of the tree construction by HOO for a specific function.

Here the third term νρh in Uh,i(t) is supposed to be a bound on the difference f(x∗) − f(x)
over a region at depth h that contains one of the maxima of the function. As a consequence, the
HOO algorithm needs some prior knowledge on the smoothness of the function as it needs some
information on νρh.

Remark 4. In practice, if we know the number of rounds n in advance, we can change the log(t)
term in the line 18 into log(n), which can significantly accelerate the processing time since at each
round, only the cells along the current optimistic path need to be updated.

6



Algorithm 2: Hierarchical Optimistic Optimization
Input : ν1 > 0; ρ ∈ (0, 1); c > 0; tree partition {Ph,i}.
Initialize: T1 = {(0, 1)}; B1,1(1) = B1,2(1) = +∞

1 for t← 1 to n do
2 (h, i)← (0, 1); Pt ← {(h, i)};
3 while (h, i) ∈ Tt do
4 if Bh+1,2i−1 ≥ Bh+1,2i then
5 (h, i)← (h+ 1, 2i− 1);
6 else
7 (h, i)← (h+ 1, 2i);
8 end
9 end

10 (ht, it)← (h, i);
11 Pull an arbitrary arm in Pht,it and obtain rt;
12 Tt ← Tt ∪ {(ht, it)};
13 for (h, i) ∈ Pt do
14 Th,i(t)← Th,i(t) + 1;
15 Update µ̂h,i(t);
16 end
17 for (h, i) ∈ Tt do
18 Uh,i(t)← µ̂h,i(t) +

√
2 log(t)
Th,i(t)

+ ν1ρ
h;

19 end
20 Bht+1,2it−1(t)←∞; Bht+1,2it(t)←∞;
21 T ← Tt;
22 while T 6= {(0, 1)} do
23 Take any leaf (h, i);
24 Bh,i(t)← min{Uh,i(t),max{Bh+1,2i−1(t), Bh+1,2i(t)}};
25 T ← T − {(h, i)};
26 end
27 end

2.1.2 Analysis

A global optimization problem without any assumptions on the regularity of f would be almost
a "mission impossible". Most of the algorithms make a very weak hypothesis that f possesses at
least some local smoothness. This smoothness is often quantified by a certain semi-metric l, e.g.
l(x,y) = ‖x− y‖α with α < 1. One simple example of smoothness assumption could be:

f(x∗)− f(x) ≤ l(x∗,x)

for x close to one of the function maxima.
As for HOO, we only need a notion of dissimilarity.

Assumption 1 (Dissimilarity). The arm space X is equipped with a non-negative function l : X 2 →
R such that ∀x ∈ X , l(x, x) = 0.

7



With this dissimilarity function, we can define the diameter of a subset A ⊆ X as diam(A) :=
supx,y∈A l(x,y), while an l-ball of radius ε and center x ∈ X can be defined as B(x, ε) := {x′ ∈ X :
l(x,x′) ≤ ε}. We then make the following assumptions on the local smoothness.

Assumption 2 (Local smoothness). Assume that there exist ν1, ν2 > 0 and ρ ∈ (0, 1) s.t. for all
nodes (h, i), (h, j) and for all x,y ∈ X :

(i) diam(Ph,i) ≤ ν1ρ
h,

(ii) ∃xoh,i ∈ Ph,i s.t. Bh,i := B(xoh,i, ν2ρ
h) ⊂ Ph,i,

(iii) Bh,i ∩ Bh,j = ∅,

(iv) f∗ − f(y) ≤ f∗ − f(x) + max{f∗ − f(x), l(x,y)}.

For all nodes (h, i), let us denote f∗h,i := supx∈Ph,i f(x) and ∆h,i := f∗−f∗h,i. With Assumption 1
and Assumption 2, we can prove a crucial lemma for the analysis of HOO (see Appendix A for the
proof).

Lemma 5. If ∆h,i ≤ cν1ρ
h for some constant c ≥ 0, then all arms in Ph,i are max{2c, c+ 1}ν1ρ

h-
optimal.

The regret of an X -armed bandits problem should depend on how fast the volumes of ε-optimal
arms shrink as ε tends toward 0 as observed by Auer et al. 2007. Thus they defined a notion of near-
optimality dimension, which measures the size of the ε-optimal space Xε := {x ∈ X : f(x) > f∗− ε}
in terms of the packing number N (A, l, ε) that represents the maximum number of disjoint l-balls
of radius ε contained in the subset A ⊆ X .

Definition 6 (Near-optimality dimension). For any constant c > 0, ε0 > 0, the (c, ε0)-near-
optimality dimension d1 of f with respect to l is defined as

d1(c, ε0) := inf{d′ ∈ R+ : ∃C > 0, ∀ε ≥ ε0,N (Xcε, l, ε) ≤ Cε−d
′}.

The cumulative regret bound of HOO is stated as follow.

Theorem 7. Under Assumptions 1 and 2, let d be the 4ν1/ν2-near-optimality dimension of f w.r.t
l, then there exists γ s.t.

E [Rn] ≤ γn(d+1)/(d+2)(log(n))1/(d+2).

This result suggests that in the case of d = 0, the regret bound is O(
√
n log(n)).

2.2 Parallel Optimistic Optimization

Parallel Optimistic Optimization (POO) Grill et al. 2015 is somewhat a "meta-algorithm" on top
of HOO, and is also designed to be an anytime algorithm. It is under some milder assumptions
compared to HOO. In fact, the semi-metric assumption made in HOO is not necessary. It does not
exploit full information of the metric value, but only uses ν and ρ, thus a single assumption that
relates directly f to the partitioning could be preferred.

8



2.2.1 POO Algorithm

The idea of POO is very simple, it uses HOO as subroutine in which several instances of HOO
are run at the same time, hence the name of the algorithm. Each instance of HOO is run with a
different (ν, ρ). At the end, it chooses the (ν∗, ρ∗) that performs the best and returns one of the
points chosen randomly by the corresponding HOO instance.

Running an instance of HOO with (ν, ρ) that are far from the best one may cause underper-
formance of HOO. However POO analysis shows surprisingly that this suboptimality gap does not
decrease too fast while the chosen (ν, ρ) roll away from the best one. It shows also that only ln(n)
instances of HOO are needed to make sure that one of the instances performs well. Here n is the
current number of function evaluations, meaning that we do not need to know the total number of
rounds in advance, which makes POO an anytime algorithm.

2.2.2 Analysis

Given a global maximum x∗, let us denote i∗h the index of the only cell at depth h that contains x∗.
As we already mentioned, the POO analysis relates directly f to the partitioning, thus we make the
following assumption on the local smoothness.

Assumption 3 (Local smoothness). There exist ν > 0 and ρ ∈ (0, 1) s.t.,

∀h ≥ 0,∀x ∈ Ph,i∗h , f(x) ≥ f(x∗)− νρh.

In order to measure the complexity of the optimization problem directly in terms of partitioning,
a new definition of near-optimality dimension is needed.

Definition 8 (Near-optimality dimension).

d2(ν, ρ) = inf{d′ ∈ R+ : ∃C > 0, ∀h ≥ 0,Nh(2νρh) ≤ Cρ−d′h},

where Nh(2νρh) is the number of cells Ph,i s.t.,

sup
x∈Ph,i

f(x) ≥ f(x∗)− 2νρh.

Intuitively, Nh(2νρ) represents the number of cells that any algorithm needs to sample in order to
find the maximum. Thus, a small near-optimality dimension makes the function easier to optimize.

An upper bound on the simple regret of POO can be then given in terms of the near-optimality
dimension.

Theorem 9. At step n, for any (ν, ρ) that verifies the smoothness assumption for POO such that
ν ≤ νmax and ρ ≤ ρmax, there exists κ s.t.,

E[Sn] ≤ κ
(

log(n)2

n

) 1
d(ν,ρ)+2

,

where νmax and ρmax are two optional parameters for the POO algorithm that can be set automatically
as functions of n.

Notice that here only simple regret bound is reported for POO, while for HOO we can bound
both cumulative and simple regret. The reason is that POO runs several non-optimal instances of
HOO which can dramatically influence the cumulative regret.

9



2.2.3 Discussion

Assumptions made for the POO analysis (see Assumption 3) are milder than those of HOO (see
Assumption 2). However it is assumed that the regret bound of HOO remains valid under these
weaker assumptions. The reason why milder assumptions are proposed is quite simple since HOO
does not exploit full information about the metric l. One natural question is whether we can indeed
adapt POO assumptions to the HOO analysis.

Unfortunately, it seems to be a bit hard to do so. The main reason behind this relates to
Lemma 5. Indeed, Lemma 5 ensures that once the local optimal point in a cell Ph,i is not far from
the global optimum, then all the points in this very cell would not be very far from the global
optimum neither. This, however, cannot be ensured only under Assumption 3.

As we already mentioned, POO is some kind of "meta-algorithm", which means it can be used
on top of other hierarchical optimization algorithms than HOO. Therefore, as for the theoretical
contribution of this report, we try to find another underlying algorithm which is able to keep its
theoretical guarantee under POO assumptions.

2.3 High-Confidence Tree

The high-confidence tree (HCT) algorithm Azar et al. 2014 is another algorithm for the X -armed
bandits problem. The main advantage of HCT with respect to HOO is that it may handle the case
of correlated bandit reward. However, it will not be our focus in this report, and we concentrate on
the i.i.d variant of HCT (HCT-iid).

2.3.1 HCT Algorithm

We consider a binary covering tree Tn for the sake of simplicity. Unlike in HOO where an arbitrary
arm x ∈ Ph,i is pulled whenever the node (h, i) has been selected by the algorithm, in HCT, a
representative point xh,i is associated to every cell Ph,i. Algorithm 3 shows the structure of HCT
for which we have to clarify some notations.

Indeed, at each node (h, i) of the covering tree Tn, the algorithm keeps track of some statistics
regarding its representative arm xh,i. These include the empirical mean µ̂h,i(t) which is defined as

µ̂h,i(t) :=
1

Th,i(t)

Th,i(t)∑
s=1

r(h,i),s

where Th,i(t) is the number of pulls of (h, i) (notice that this is different from HOO), and r(h,i),s

denotes the s-th reward received by xh,i. Similar to HOO, the HCT algorithm keeps track of an
upper confidence bound U -value

Uh,i(t) := µ̂h,i(t) + νρh + c

√
log(1/δ̃(t+))

Th,i(t)

where t+ = 2dlog(t)e, δ̃(t) := min{c1δ/t, 1/2}, and its corresponding B-value

Bh,i(t) :=

{
min{Uh,i(t),max{Bh+1,2i−1(t), Bh+1,2i(t)}} if (h, i) is a leaf
∞ otherwise

10



Algorithm 3: High-Confidence Tree
Input : ν > 0; ρ ∈ (0, 1); c > 0; tree partition {Ph,i}; confidence δ.
Initialize: T1 = {(0, 1), (1, 1), (1, 2)}; H(1) = 1; U1,1(1) = U1,2(1) = +∞

1 for t← 1 to n do
2 if t = t+ then
3 for (h, i) ∈ Tt do

4 Uh,i(t)← µ̂h,i(t) + νρh + c

√
log(1/δ̃(t+))
Th,i(t)

;

5 end
6 for (h, i) ∈ Tt backward from H(t) do
7 if (h, i) is a leaf then
8 Bh,i(t)← Uh,i(t);
9 else

10 Bh,i(t)← min{Uh,i(t),max{Bh+1,2i−1(t), Bh+1,2i(t)}};
11 end
12 end
13 end
14 (ht, it), Pt ← OptTraverse(Tt);
15 Pull xht,it and obtain rt;
16 t← t+ 1;
17 Tht,it(t)← Tht,it(t) + 1;
18 Update µ̂ht,it(t);

19 Uht,it(t)← µ̂ht,it(t) + νρht + c

√
log(1/δ̃(t+))
Tht,it (t)

;

20 UpdateB(Tt, Pt, (ht, it));
21 τht(t)← d

c2 log(1/δ̃(t+))
ν2

ρ−2hte;
22 if Tht,it(t) ≥ τht(t) and (ht, it) is a leaf then
23 Expand((ht, it));
24 end
25 end

which is designed to be a tighter upper confidence bound. Here, ν and ρ are the same kind of
parameters as for HOO, and c, c1 are two constants (see Appendix B for further discussion).

From line 2 to line 13 in Algorithm 3 we can see a refreshing phase of the HCT algorithm. Indeed,
since HCT is an anytime algorithm just like HOO and POO, we need to update periodically the
upper bounds statistics on every node in the covering tree. However, it is not necessary to refresh
at every round since uncertainty terms depend on δ̃(t)+ which changes only at t = 1, 2, 4, . . ..

Now the tricky part in this algorithm is the subroutine OptTraverse described in Algorithm 4
which tells us how to explore the covering tree, and returns a selected node and the current optimistic
path. Indeed, unlike in HOO where every cell is sampled only once at each level, HCT proposes
to sample one node a sufficient number of times so as to reduce the uncertainty sufficiently before
expanding this very node. Here τh(t) is considered to be a threshold when the expansion of a node

11



happens,

τh(t) = dc
2 log(1/δ̃(t+))

ν2
ρ−2he.

Intuitively, the expansion of a node occurs when the uncertainty over the rewards in Ph,i becomes

smaller than the resolution of the node, which means the third term c
√

log(1/δ̃(t+))/Th,i(t) in the
upper confidence bound Uh,i(t) is roughly equal to the second term νρh (see Appendix B for further
details).

Algorithm 4: The OptTraverse function
Input : Tt.
Initialize: (h, i)← (0, 1); P ← {(0, 1)}; T0,1(t) = τ0(t) = 1

1 while (h, i) is not a leaf and Th,i(t) ≥ τh(t) do
2 if Bh+1,2i−1(t) ≥ Bh+1,2i(t) then
3 (h, i)← (h+ 1, 2i− 1);
4 else
5 (h, i)← (h+ 1, 2i);
6 end
7 P ← P ∪ {(h, i)};
8 end
9 return (h, i) and P

Finally, the UpdateB function is used to update the B-values along the current optimistic path,
and the Expand function is used to expand a leaf when it has been sampled enough times.

2.3.2 Analysis

Now we give the regret bound of HCT-iid using slightly modified near-optimality dimension and
the same local smoothness assumption as Assumption 2. And we demonstrate that it can achieve
almost the same guarantee as the original HCT paper.

Definition 10 (Near-optimality dimension).

d3(ν, ρ) = inf{d′ ∈ R+ : ∃C > 0, ∀h ≥ 0,Nh(3νρh) ≤ Cρ−d′h},

where Nh(3νρh) is the number of cells Ph,i s.t.,

sup
x∈Ph,i

f(x) ≥ f(x∗)− 3νρh.

We now give the regret bound for HCT as follows, and the proof of the following theorem is
reported in Appendix B.

Theorem 11. If at each step t, the reward yt is independent of all prior random events, then the
regret of HCT-iid in n steps is,

Rn ≤ O((log(n/δ))1/(d+2)n(d+1)/(d+2)),

with probability 1− δ.
This bound matches the regret bound for HOO up to constants. It is thus a reasonable underlying

algorithm to use within POO.

12



2.3.3 Discussion

We proved that POO assumptions can be adapted to HCT. Indeed, the main difference between
HCT and HOO is the fact that HCT expands leaves only when they are pulled enough number of
times such that we have small enough uncertainty. The trick in this case is that we can bound the
depth of the covering tree constructed by the algorithm to O(log(n)), while for HOO, the depth of
the covering tree can be linear w.r.t to n.

In general, hierarchical optimization algorithms shows efficiency in regret minimization, and is
also time-consumption friendly if they are implemented smartly.

2.4 Comparison

One may ask naturally which one performs better, HCT or HOO? Thus in this part of the report,
we show some numerical simulations of HCT and HOO in order to compare them.

We compare HOO and HCT on some different 1D and 2D benchmark functions, we show the
averaged cumulative regret Rn/n as a function of the number of evaluations n. Notice that Rn/n
can be considered as an approximation of the simple regret if we use the recommendation strategy
as mentioned in Remark 1. Functions used for our experiments are shown in Fig. 3.

Fig. 4 reports the comparison between HCT and HOO on these functions. For each function,
we ran experiments 10 times over 5000 evaluations. We can see that HOO beats HCT in most
cases, thus for the rest of this work, we use essentially HOO and POO on top of HOO for numerical
simulations.

3 Bayesian Optimization

In this section, we present another dominant type of approaches for black box optimization which is
Bayesian optimization. Bayesian optimization algorithms usually consist of two main components:
prior over the target function and an acquisition function which guides the search for the optimum.
We explain in details their roles in the Bayesian optimization approach and we also discuss about
some encountered drawbacks.

3.1 The Bayesian Optimization Approach

As we already mentioned in the introduction, the objective of sequential global optimization is
to approximate the optimum as quickly as possible. Bayesian optimization technique is another
powerful tool to achieve this goal. It is called Bayesian optimization since it is derived from the
famous "Bayes’ theorem":

P [M |E] ∝ P [E|M ]P [M ],

where M represents the model and E represents the given evidence. Hence, Bayesian optimization
depends on some prior distribution over f given some observations Dt := {x1:t, r1:t} where

∀i ∈ {1, . . . , t}, ri = f(xi) + εi,

and defines a posterior distribution over the space of functions. Then, it depends on an utility
function/acquisition function to decide where to sample next by optimizing the expectation of
utility w.r.t the posterior distribution of the target function. Algorithm 5 shows the pseudo-code of

13



(a) x 7→ − cos(x)− sin(3x) (b) 1D Double Sine Function

(c) 1D Grammacy Function (d) 1D Garland Function (e) 2D Himmelblau Function

(f) 2D Rosenbrock Function

Figure 3: Functions used for HOO vs HCT comparisons.

a Bayesian optimization-like approach and Fig. 5 shows a simple example of Bayesian optimization
with 5 observations.

In the next, we study a special case of Bayesian optimization where the prior on f is a Gaussian
process (GP).

Remark 5. GP priors are the most widely used priors, but other priors exist as well like Wiener
process Močkus et al. 1978.

3.2 Priors over Functions

Unlike in the hierarchical setting, we can make some implicit assumptions on the smoothness without
explicit parametric assumptions in Bayesian optimization. For example, in a Gaussian process
setting, we assume that the target function is a sample from a Gaussian process.

A Gaussian process GP (µ(x), k(x,x′)) is characterized by its mean function µ(x) = E[f(x)]
and its covariance function k(x,x′) = E[(f(x) − µ(x))(f(x′) − µ(x′))]. In our case, we enforce
k(x,x′) ≤ 1 and we suppose that GPs are not conditioned on data, thus we can assume that µ ≡ 0.

14



(a) x 7→ − cos(x)− sin(3x) (b) 1D Double Sine Function

(c) 1D Grammacy Function (d) 1D Garland Function (e) 2D Himmelblau Function

(f) 2D Rosenbrock Function

Figure 4: HOO vs HCT.

One main advantage of Gaussian process priors is that the posterior distribution has analytic
expressions for mean and variance. Assume that we use GP (0, k(x,x′)) as the prior distribution
over the target function f and we have some noisy samples r1:t = [r1, r2, . . . , rt]

T evaluated over
points [x1,x2, . . . ,xt]T with Gaussian noises. Now if we query a new point xt+1 with reward rt+1,
then the joint distribution is given by[

r1:t

rt+1

]
∼ N

(
0,
[

K(x1:t,x1:t) K(x1:t,xt+1)
K(x1:t,xt+1)T K(xt+1,xt+1)

])
.

Using the Sherman-Morrison-Woodbury formula Sherman and Morrison 1950, one can easily obtain

rt+1|Dt,xt+1 ∼ N (µ(xt+1|Dt), σ2(xt+1|Dt))

where
µ(xt+1|Dt) = K(x1:t,xt+1)T (K(x1:t,x1:t))

−1r1:t,

σ2(xt+1|Dt) = K(xt+1,xt+1)−K(x1:t,xt+1)T (K(x1:t,x1:t))
−1K(x1:t,xt+1),

15



(a) Prediction after 5 steps

(b) Target function

Figure 5: A toy 1D example of Bayesian optimization after 5 observations on a simple target
function x ∈ [0, 2π] 7→ − cos(x) − sin(3x). The solid blue line in (a) is the GP prediction of the
target function given the data, the cyan-shaded part shows the mean plus and minus the variance,
and the small rounds are the observations. (b) shows the objective function.

where K(x1:n,x′1:m) is the covariance matrix between vectors x1:n and x′1:m (see Appendix C for
more details).

3.3 Kernel Functions

The covariance function of a GP is very important since it defines the smoothness properties of
sample functions drawn from it. Here we list some popular choices of kernel functions that are used
in our experiments as well.

Linear kernel Linear kernel is probably the simplest kernel which has the form

k(x,x′) = xTx′,

and its corresponding sample functions has the form

f(x) = wTx,

where w ∼ N (0, I).

16



Algorithm 5: Bayesian Optimization
Input: input space X ; prior information.

1 for t← 1 to n do
2 Pick xt by maximizing the acquisition function: xt = arg maxu(x|D1:t−1);
3 Sample the target and obtain a new reward: rt = f(xt) + εt;
4 Perform Bayesian update and augment the data.
5 end

Squared Exponential kernel Rasmussen and Williams 2006 proposed a hyper-parameterized
version of squared exponential kernel with a vector of automatic relevance determination (ARD)
for anisotropic models,

k(x,x′) = exp

(
−1

2
(x− x′)T diag(θ)−2(x− x′)

)
.

Remark 6. An anisotropic model simply means its covariance matrix does not equal to identity
matrix.

Matérn kernel Another popular choice of kernel is the Matérn kernel Matérn 1960 which involves
a smoothness parameter ν,

k(x,x′) =
1

2ν−1Γ(ν)
(2
√
ν‖x− x′‖)νBν(2

√
ν‖x− x′‖).

Here Γ and Bν represent the Gamma function and the Bessel function respectively. In practice, ν
is usually set to 1/2, 3/2 and 5/2.

3.4 Acquisition Functions

Now we introduce some popular acquisition functions used in our experiments such as probability
of improvement (PI), expected improvement (EI) and Gaussian Process-Upper Confidence Bound
(GP-UCB). And we also discuss about the problem of optimizing the acquisition function.

3.4.1 Probability of Improvement

One of the first acquisition functions for GP priors is suggested by Kushner 1964. It considers the
probability of improvement over the incumbent maximum of the acquisition function f(x+) where
x+ := arg maxx∈x1:t

f(x). And the PI function is defined as

PI(x) := P(f(x) ≥ f(x+) + ξ)

= Φ

(
µ(x)− f(x+)− ξ

σ(x)

)
,

where Φ is the normal cumulative distribution function and ξ is an exploration-exploitation trade-off
parameter.

17



3.4.2 Expected Improvement

An alternative acquisition function would take into account also the magnitude of the improvement
that a point can potentially make. Močkus et al. 1978 suggested an improvement function,

I(x) := max{0, ft(x)− f(x+)}.

The new sample is then decided by maximizing the expected improvement,

xt = arg max
x

E
[
max{0, ft(x)− f(x+)}|Dt−1

]
.

This expression can be evaluated analytically Jones et al. 1998, and Lizotte 2008 gives the
exploration-exploitation trade-off version of this analytic expression:

EI(x) =

{
(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0,

where

Z =

{
µ(x)−f(x+)−ξ

σ(x) if σ(x) > 0

0 if σ(x) = 0,

and φ and Φ denote the normal probability distribution function and the normal cumulative distri-
bution function respectively.

3.4.3 GP-UCB

The GP-UCB algorithm Srinivas et al. 2009 is a somewhat different kind of acquisition function.
One may think of querying the next point by maximizing the variance. However in practice, it is
wasteful to maximize merely the variance as it only concentrates on reducing the global uncertainty,
but not exploiting knowledge around the maxima. Another idea is to choose points by maximizing
the expected rewards, i.e. xt = arg maxx∈X µt−1(x). However, this may soon lead the algorithm to
a local optimum.

A combination of these two strategies is proposed to overcome this dilemma:

xt = arg max
x∈X

µt−1(x) +
√
βtσt−1(x),

where βt are some well chosen constant.
GP-UCB implicitly trades off between exploration and exploitation. It explores by sampling x

with large σ2
n(x) and it exploits by sampling x with large µn(x). Indeed, this GP-UCB selection is

mainly motivated by the UCB algorithm, as µt−1(x) +
√
βtσt−1(x) is an upper confidence bound

on f(x).
Some cumulative regret bounds have been given for GP-UCB, more precisely in the case when

X is finite or compact and convex. Here, we show the result for finite X .
For that purpose, we need a notion of information gain. In order to estimate globally the target

function f as quickly as possible, we need to choose carefully a set of samples A ⊂ X . The way
we measure the informativeness of a set of samples is the information gain Cover and Thomas 2012
which is the mutual information between f and observations yA,

I(yA; f) = H(yA)−H(yA|f).

18



Finding a subset A ⊂ X that maximizes the information gain is an NP-hard problem, however,
it can be approximated by a greedy algorithm. Indeed, if we denote F (A) = I(yA; f), then at step
t of the algorithm, we can choose

xt = arg max
x∈X

F (At−1 ∪ {x}),

which can be shown to be equivalent to pick

xt = arg max
x∈X

σt−1(x)).

And we can show that this greedy heuristic is guaranteed to find a near-optimal solution after n
rounds,

F (An) ≥ (1− 1/e) max
|A|≤n

F (A).

This is true mainly due to the fact that F satisfies a good property called submodularity Krause
and Guestrin 2012. Indeed, this greedy approximation guarantee holds for any submodular func-
tion Nemhauser et al. 1978.

Now We define the maximum information gain after n rounds as:

γn = max
A⊂X ,|A|=n

I(yA; f),

and we can obtain the following bound for finite X .

Theorem 12. Let δ ∈ (0, 1) and βt = 2 log(|D|t2π2/δ). Running GP-UCB of a sample f of
GP (0, k(x, x′)), we obtain a cumulative bound:

Rn = O∗(nγn log |X |)

with a high probability, i.e.,

P{Rn ≤
√
nC1βnγn,∀n ≥ 1} ≥ 1− δ,

where C1 = 8/ log(1 + σ−2).

Remark 7. Here bounds on cumulative regret are given. This may seem to be somewhat weird since
our objective is sequential global optimization. It may be more appropriate to focus on the simple
regret.

3.4.4 Optimization of the Acquisition Function

One problem we encounter in the implementation of GP methods is how to optimize the acquisition
function. It may seem a bit strange since we need to tackle with a secondary optimization problem in
order to solve the original one. But this secondary problem is usually easier because the acquisition
function is easy to evaluate.

A naive but efficient idea could be just optimizing the acquisition function on a fixed discrete grid.
Other approaches can be considered as well like DIRECT Jones et al. 1993 and LBFGS Broyden
1970 (the last one requires the knowledge of gradients which may not be the case for all acquisition
functions).

19



3.5 Discussion

Bayesian optimization is studied by a huge range of research work, and is more widely used in
real applications than hierarchical optimization algorithms. This does not mean that Bayesian
optimization has better performance than hierarchical optimization. Indeed, hierarchical-inspired
methods are developed more recently and comparison between these two family of methods are
rarely done before. In the next section, we show several numerical results on this task and we will
actually see that it is hard to compare them directly.

4 Implementations and Experiments

4.1 Implementations

All codes for this work have been carried out in Python. One unique framework for both Bayesian
optimization and hierarchical optimization is implemented so that we can compare them. For
applications to hyper-parameter optimization, all machine learning models we used are directly
imported from scikit-learn.

4.2 Synthetic Results

As one of the objectives of this internship, we want to compare the performance between hierarchical
optimization methods and Bayesian optimization methods. Recall that we focus mostly on HOO
for numerical simulations rather than HCT (see 2.4), thus in this part, we compare HOO, POO and
BO-based methods on some benchmark functions. We run 10 experiments over 100 evaluations for
each algorithm.

We first run experiments on a "difficult function" displayed in Fig. 6 Grill et al. 2015. It is a
difficult function since it possesses upper and lower envelope around its global maximum that are
equivalent to x2 and

√
x respectively, and therefore its near-optimality dimension is not equal to 0.

It is thus a good benchmark function to compare POO and HOO. Fig. 7 shows that POO works
almost as well as HOO on this function.

On the other hand, we can see that POO or HOO outperforms BO methods on this function.
This is quite understandable since this function can clearly not be considered as a sample from some
Gaussian process.

However, if we run experiments on a function like Fig. 5, we can see in Fig. 8 that this time
BO methods outperforms HOO and POO, since we are trying to optimize for a sinusoidal function
which can perfectly be considered as a sample from some Gaussian process.

Discussion It is hard to tell whether Bayesian optimization works better or hierarchical opti-
mization does since they do not cover the same class of functions. More precisely, we do not know
if we can find any relation between these two classes of functions. However, one major advantage of
hierarchical optimization algorithms is that they are much faster in term of time complexity. Time
complexity for hierarchical optimization is around O(n log(n), whereas Bayesian methods have a
time complexity of O(n3) since we need to update the covariance matrix at every time step.

20



Figure 6: Difficult function f : x 7→ s(log2(|x − 0.5|)(
√
|x− 0.5| − (|x − 0.5|)2) where s(x) = 1 if

the fractional part of x is less than 0.5, and s(x) = 0 otherwise.

4.3 Applications to Hyper-parameter Optimization for Machine Learning

One important application of black box optimization or multi-armed bandit model is hyper-parameter
optimization in the context of machine learning. Hyper-parameter optimization is usually the most
tedious part in fitting a machine learning algorithm. In practice, we are interested in models whose
loss, evaluated on an independent part of data is as low as possible. Different hyper-parameter
choices lead to different losses, therefore finding the optimal set of hyper-parameters is of impor-
tance. In reality, we never know that if the point found is the global optimum, but from a practical
point of view, we are only interested in finding the model that works best in a production setting.

In this part, we first formalize our experimental setup by introducing benchmark strategies, rules
used for benchmarking, as well as some explanation on the machine learning models used here.

4.3.1 General Setting

A hyper-parameter optimization problem can be considered as a fixed-budget pure-exploration
problem. We recall that in a pure- exploration problem, the decision maker has to explore resources
within a limited budget, e.g. within n rounds of exploration, then give a recommendation at the
end. The quality of the decision is evaluated only on this final recommendation. This corresponds
exactly to the hyper-parameter optimization situation where one hyper-parameter configuration can
be considered as one arm. Indeed, if we consider a function f : X → R and take X as a set of
parameter configurations, we can then map one parameter configuration to the performance of the
machine learning algorithm using the corresponding parameters. If |X | < ∞, we can refer to a
bandit problem; otherwise, we can refer to a general sequential optimization problem.

We can cite numerous approaches that can be applied to solve this problem, such as grid search,
Bayesian optimization, random search, gradient-based optimization, etc. Particularly, there exist
several multi-armed bandit-inspired algorithms such as UCBE Audibert et al. 2010, UGapE Gabillon
et al. 2012, BayesUCB Kaufmann et al. 2012a, GP-UCB, Thompson sampling Kaufmann et al.
2012b, BayesGap Hoffman et al. 2014, etc.

In our experiments, the procedure can be described briefly as follow, at each round t:

21



Figure 7: Log-scale results for HOO, POO and BO methods on a difficult function.

• the action of pulling an arm consists in choosing a vector of hyper-parameters xt using some
adaptive algorithm;

• xt is then used in some machine learning to obtain a "reward" rt (more details are given
in 4.3.3);

• is recommended an arm x(t) (the same notation as Section 2).

Remark 8. Compared to experiments carried out in Hoffman et al. 2014, where only a finite grid of
hyper-parameters are taken into account, in our setting, we consider a continuous arm space.

4.3.2 Benchmark Strategies

In the machine learning community, hyper-parameter optimization is often overlooked, and in fact,
some of the most famous models (e.g. Random Forests) have been shown to be somewhat insensitive
to hyper-parameter optimization Verikas et al. 2011. Two common strategies for finding better
hyper-parameters are presented here: grid search and random search. These two methods are used
in different occasions: in particular grid search is typically used when the search space is not too
large and the model to fit is not expensive to evaluate. Random search is more popular when
it becomes impractical to explore the search. More details of these two common strategies are
presented below.

Grid Search Also known as parameter sweep. This is simply an exhaustive search in a user
specified subset of parameter space. Search bounds have to be set manually. When multiple hyper-
parameters have to be optimized over their sets, grid search considers the Cartesian product of

22



Figure 8: Log-scale results for HOO, POO and BO methods on x ∈ [0, 2π] 7→ − cos(x)− sin(3x).

all of them. This poses a problem when the number of hyper-parameters to optimize grows, also
known as the curse of dimensionality. While suffering from this problem, grid search is still widely
used for small to mid-sized problems, where function evaluations are not very expensive. Also, it is
embarrassingly parallel: function evaluations can be distributed over in a simple way

Random Search Grid search is exhaustive since it considers all possible evaluations over a Carte-
sian product over parameter sets. Randomized search in hyper-parameter space is also a very pop-
ular method for the task at hand. In particular, this method has been shown to work considerably
better in high-dimensional spaces than grid search Bergstra and Yoshua 2012. There is also evidence
that often sometimes some hyper-parameters do not affect the loss significantly.

4.3.3 Evaluation Metrics

Throughout all the experiments, we will be minimizing loss functions, in some form or another.
Every problem presented here is formulated either as a regression or a classification task, therefore it
is of importance to define early on what type of loss to use in each problem. For binary classification
problems, we use the logarithmic loss, also known as binary cross-entropy, defined by:

L(y, ŷ) = − 1

n

∑
i

(yi log(ŷi) + (1− yi) log(1− ŷi))

The log-loss is very popular in the machine learning community Bishop 2006. This particular
metric does not only take into account whether a classifier makes the right decision given a threshold
c, (like the 0/1 loss would), but also the confidence in predictions ŷ. It is also very natural since

23



it is just the negative log-likelihood of a Bernoulli random variable. The use of the logarithm both
punishes erroneous extremely confident positive or negative predictions.

We generalize the previous metric for multi-class classification problems. The following expres-
sion is typically called categorical cross-entropy:

L(y, p̂) = − 1

n

n∑
i=1

m∑
j=1

yij log(p̂ij)

where p̂ij is the predicted probability of a sample i belonging to class j, and m is the number
of classes considered. For continuous regression problems, the loss that we use is the typical mean
squared error, defined by:

L(y, ŷ) =
1

n

∑
i

(yi − ŷi)2

notice that in our situation, it would be difficult to estimate the "probability of error", thus we
report the mean squared root error instead, which is a typical approximation for the error rate to
our interest

While we have discussed the metrics to evaluate in each predictive problem, we still need to
define how these losses is evaluated in each step. To evaluate the performance of a given hyper-
parameter optimization procedure, we have to balance both the performance in terms of loss and
the number of evaluations necessary in order to get to a satisfactory solution. In practice, this is
exactly how we benchmark the different strategies, through a plot where the x-axis represent the
number of function evaluations, and the y-axis the best log-loss found.

Evaluating the loss function itself can lead to multiple different values depending on the test
values. One could choose an approach where this loss is evaluated on a single holdout test. This
would lead to noisy estimates, however. We choose the more stable approach of performing a
shuffled k = 5 cross-validation scheme to obtain a more reliable loss estimate. In practice, this
means that we fit 5 models with the same architecture to different train/test splits and average the
loss results in each. More precisely, for every cross-validation split cvj , j = 1 . . . 5, we get a loss

Lj(yj , ŷj) =
1

n

∑
i (yji − ŷji)2, thus the loss at time t is

1

5

5∑
j=1

Lj(yj , ŷj) =
1

5n

5∑
j=1

∑
i

(yji − ŷji)2

where yj stands for test values for cross-validation split cvj , and ŷj stands for the corresponding
predicted values.

Now that we have defined the loss function for both classification and regression problem, we
can thus specify the meaning of function evaluations in our task. Indeed, the underlying task is
to find some classifier (with a certain vector of paramters) clfxt which minimizes the expected
loss f(clfxt) = E [L(y, clfxt(X)] where f corresponds to our underlying black box function, X
corresponds to test points and y corresponds to test values. Notice that we only have access to
estimate of this underlying function, it is difficult to report directly simple or cumulative regret in
this situation, we thus report logistic loss or mean square error instead.
Remark 9. Since we do cross-validation at each step, and average the loss results, we can consider
that the estimates of the mean reward are not very noisy. Thus at each round t, we choose to
recommend the arm x(t) that gives us the best reward so far.

24



4.3.4 Machine Learning Models

Since the shape of our objective function depends on both the dataset and the predictor, we try to
span as many different types of machine learning models as possible to provide the most extensive
evaluation as possible. Except for rare occasions where we could not fit a model to a particular
dataset for numerical conditions, all models are evaluated in all datasets with the same number
of parameters and bounds to optimize over. We consider the following models: Support Vector
Machines (SVM) with radial basis function kernel, K-nearest neighbors (KNN), neural networks
with a single hidden layer (MLP) and Gradient Boosting Machines (GBM). We briefly detail how
these work now.

Support Vector Machines A SVM model Cortes and Vapnik 1995 uses the concept of hyper-
planes in high or infinite dimensional space in order for classification or regression purposes. In
particular, a good classification model is the one that places an hyperplane that achieves maximum
distance to training points of any class. Intuitively, the larger this margin, the lower the general-
ization error of the model. For classification, the model can be defined via optimization. Assume
xi ∈ Rp, and yi ∈ {0, 1}, then the problem is to minimize:

min
w,b,ε

1

2
wTw + C

n∑
i=1

εi

s.t. yi(w
Tφ(xi) + b) ≥ 1− εi

εi ≥ 0, i = 1, . . . , n

In practice it makes more sense to minimize its dual:

min
α

1

2
αTQα− eTα

s.t. yTα = 0

0 ≤ αi ≤ C, , i = 1, . . . , n

(1)

where e is the unit vector, C is an hyper-parameter controlling an upper bound, Q is a n × n
semidefinite positive matrix defined by Qij = yiyjK(xi,xj) and K is our defined kernel function.
Finally, the decision function is defined as:

d(x) = sgn

(
n∑
i=1

yiαiK(xi,x) + ρ

)
For regression problems we now consider yi ∈ R and we try to minimize:

min
w,b,γ,γ∗

1

2
wTw + C

n∑
i=1

(γi + γ∗i )

s.t. yi −wTφ(xi)− b ≤ ε+ γi

wTφ(xi) + b− yi ≤ ε+ γ∗i

γi, γ
∗
i ≥ 0 i = 1, . . . , n

25



Parameter Type Bounds

C R+
[
10−5, 105

]
(log-scaled)

γ R+
[
10−5, 105

]
(log-scaled)

Table 1: Parameters to be optimized for SVM models.

Parameter Type Bounds

k Integer {10, . . . , 50}

Table 2: Parameters to be optimized for KNN models.

Likewise, we normally minimize its dual:

min
α,α∗

1

2
(α−α∗)Q(α−α∗) + εeT (α+α∗)− yT (α−α∗)

s.t. eT (α−α∗) = 0

0 ≤ αi, α∗i ≤ C, i = 1, . . . , n

(2)

Our decision function now becomes:

g(x) =

n∑
i=1

(αi − α∗i )K(xi,x) + ρ

For all the experiments involved in the following sections, we use scikit-learn implementation
of Support Vector Machines, which is in turn based on LibSVM Chang and Lin 2011. We optimize
over two hyper-parameters, C, the penalty parameter in the error term of Equations 1 and 2, and γ,
an radial basis function hyper-parameter controlling the smoothness of the decision function. They
are optimized on the range defined by Table 1.

K-Nearest Neighbors In contrast to other strategies presented here, K-nearest neighbors does
not approach learning by constructing a generalizable internal model, but simply stores training
instances. Classification for an example is then performed using a majority vote of its closest points
in distance. For the case of regression, we take the average of mentioned points target instead.
Since computing a whole distance matrix for all examples is computationally expensive (O(dn2)
for n samples and d dimensions), several alternatives have been proposed. KDTree Kennel 2004 is
arguably one of the most popular ones. Intuitively, it works the following way: if we know points xi
and xj are far in space, and we know point xk is close to xj , then we know xi and xk must be far
in space without explicitly having to compute their distance. It can be proven that this can reduce
the computational complexity to O(dn log n). For all benchmarking run in this work, we optimize
only parameter k, the number of neighbors to consider, over a range specified in Table 2.

Gradient Boosting Machines Boosting Schapire 1999 is a machine learning technique for si-
multaneously reducing the bias and variance of a classifier or regressor. It is based on the concept of
ensembles, that is, a set of weak models, such as trees that are combined in a smart way to produce

26



a strong model. In particular, Gradient Boosting Machines Friedman 2001 are a particular instance
of models using this boosting principle. It builds its internal model considering tree models in a
stage-wise fashion and generalizes them by optimizing a given differentiable loss function. Assuming
training data {xi, yi} i = 1, . . . , n, the algorithm works by approximating a function F̂ (x) to an
original F (x), which minimizes the expected value of some loss function L (y, F (x)), that is:

F̂ (x) = arg min
F

Ex,y [L(y, F (x)]

Gradient boosting machine defines F to be a weighted sum of weak learners hi from some class
H:

F (x) =

n∑
i=1

γihi(x) + c

We start by some constant approximation F0 and expand it iteratively:

F0(x) = arg min
γ

n∑
i=1

L(yi, γ)

Fm(x) = Fm−1(x) + arg min
f∈H

n∑
i=1

L(yi, Fm−1 + f(xi))

The problem comes when trying to optimize and arbitrary f for any loss L, so instead, we use
gradient descent to minimize:

Fm(x) = Fm−1(x)− γm
n∑
i=1

∇Fm−1L(yi, Fm−1(xi))

γm = arg min
γ

n∑
i=1

L
(
yi, Fm−1(xi)− γ

∂L (yi, Fm−1(xi))

∂Fm−1(xi)

)
γ is then chosen by some univariate optimization algorithm, such as line search. For the bench-

marks considered in this work, we use scikit-learn’s GBM implementation, and try to optimize
the hyper-parameters defined by Table 3. The learning_rate parameter shrinks the contribution
of each tree, n_estimators is the number of weak trees to fit, max_depth is the maximum depth
of each weak tree, and min_samples_split is the minimum required number of samples to split a
node in each tree.

Multilayer Perceptron Neural networks are a popular model now, specially with the rise of
Deep Learning LeCun et al. 2015 over the last years. In this work, we only consider neural network
models with a single hidden layer, or Multilayer Perceptron (MLP) models. The output of one
layer, given some input x ∈ Rp is a function f : Rp → Rq. Since a MLP contains only one hidden
layer, the output of the whole model for either regression or binary classification can be written as:

f(x) = G
(
b(2) +W (2)

(
s
(
b(1) +W (1)x

)))
,

27



Parameter Type Bounds

learning_rate R+
[
10−5, 10−2

]
n_estimators Integer {10, . . . , 100}
max_depth Integer {2, . . . , 100}
min_samples_split Integer {2, . . . , 100}

Table 3: Parameters to be optimized for GBM models.

Parameter Type Bounds
hidden_layer_size Integer [5, 50]
alpha R+ [0, 0.9]

Table 4: Parameters to be optimized for MLP models.

where W (1) and W (2) is a matrix of learned weights of size p × q and q × 1 respectively, b(1)

and b(2) are bias vectors and both G and s are non-linear differentiable functions. In practice, s is
a rectified linear unit function, that is:

s(x) = max (0,x) ,

and G(x) is the logistic function for binary classification:

G(x) =
1

1 + exp(−x)

For regression, no non-linearity is applied. For c multiple classes, W (2) changes size to q × c,
and typically chooses G to be the softmax function:

G(x)j =
exp(xj)∑c
i=1 exp(xi)

, j = 1, . . . , c

Matrices W (1), W (2) and biases b(1), b(2) are trained using backpropagation Rumelhart et al.
1986 through the use of stochastic gradient descent (SGD) Bottou 2004. For this particular piece
of work, we use the Multilayer Perceptron implementation of scikit-learn, and optimize over
hyper-parameters detailed in Table 4. In particular, we consider the number of hidden units in the
hidden layer and α, a parameter controlling L2 regularization on the learned weights.

4.3.5 Results

In this part, we report some numerical results on different datasets and we run experiments for both
classification and regression tasks. The budget for each task is fixed at n = 50 steps.

UCI Wine Dataset The UCI Wine Dataset consists of results of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivators. It includes 13
continuous attributes and 178 instances. It is a multi-classification problem for which the task is to
determine the type of wines. Fig. 9 shows the results for this dataset.

28



0 10 20 30 40 50
Number of evaluations

0.2

0.4

0.6

0.8

M
SE

Random search
EI
PI
GPUCB
HOO

(a) SVM

0 10 20 30 40 50
Number of evaluations

0.10

0.15

0.20

0.25

0.30

M
SE

Random search
EI
PI
GPUCB
HOO

(b) KNN

0 10 20 30 40 50
Number of evaluations

0.2

0.3

0.4

0.5

0.6

0.7

M
SE

Random search
EI
PI
GPUCB
HOO

(c) MLP

0 10 20 30 40 50
Number of evaluations

0.08

0.10

0.12

0.14

0.16
M

SE

Random search
EI
PI
GPUCB
HOO

(d) GBM

Figure 9: Results for the Wine Dataset.

UCI Breast Cancer (Diagnostic) Dataset The UCI Breast Cancer (Diagnostic) Dataset is a
binary classification task which contains 32 continuous attributes and 569 instances. Features are
computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. Fig. 10 shows
the results for this dataset.

UCI Yacht Hydrodynamics Dataset The UCI Yacht Hydrodynamics Dataset is a regression
problem, whose objective is to predict residuary resistance of sailing yachts which is crucial for
evaluating the ship’s performance. It contains 308 instances and 7 real attributes. Fig. 11 reports
the results for this dataset.

Discussion From these plots we can see that our black box optimization algorithms achieve
better results with less evaluations than random search which shows that they can be a good
default strategy for optimizing machine learning hyper-parameters. However, random search can

29



0 10 20 30 40 50
Number of evaluations

0.2

0.3

0.4

0.5

0.6

0.7
Lo

g-
lo

ss

Random search
EI
GPUCB
HOO

(a) SVM

0 10 20 30 40 50
Number of evaluations

0.28

0.30

0.32

0.34

0.36

Lo
g-

lo
ss

Random search
EI
PI
GPUCB
HOO

(b) KNN

0 10 20 30 40 50
Number of evaluations

0.146

0.148

0.150

0.152

0.154

0.156

Lo
g-

lo
ss

Random search
EI
PI
GPUCB
HOO

(c) MLP

0 10 20 30 40 50
Number of evaluations

0.15

0.20

0.25

0.30

0.35

0.40

Lo
g-

lo
ss

Random search
EI
PI
GPUCB
HOO

(d) GBM

Figure 10: Results for the Breast Cancer (Diagnostic) Dataset.

be parallelized over threads, and therefore can potentially outperforms techniques presented here in
case we have powerful computing ability.

Remark 10. On some figures, we can only see the yellow curve for GP-UCB, indeed, curves for PI
and EI just overlay with the yellow curve, which means the choice of acquisition function in the our
context does not have a great influence on the final performance.

Conclusion

In this piece of work, we studied the global optimization problem, or sometimes called black box
optimization, and its link to multi-armed bandit models. We concentrated especially on two dom-
inant approaches for this problem which are hierarchical optimization and Bayesian optimization
and we compared their performance.

We proved that milder assumptions of POO can be adapted to HCT, which guarantees the

30



0 10 20 30 40 50
Number of evaluations

0

50

100

150

200

M
SE

Random search
EI
PI
GPUCB
HOO

(a) SVM

0 10 20 30 40 50
Number of evaluations

75

80

85

90

95

100

105

M
SE

Random search
EI
GPUCB
HOO

(b) KNN

0 10 20 30 40 50
Number of evaluations

110

120

130

140

150

160

170

M
SE

Random search
EI
PI
GPUCB
HOO

(c) MLP

0 10 20 30 40 50
Number of evaluations

2

4

6

8

10

12

14

M
SE

Random search
EI
PI
GPUCB
HOO

(d) GBM

Figure 11: Results for the Yacht Hydrodynamics Dataset.

validity of POO analysis.
We also applied black box optimization algorithms that we have studied to the task of hyper-

parameter optimization in the context of machine learning. It suggested that they can be seriously
taken into account when we do not have enough budget to explore large number of different hyper-
parameters.

Future Work For the future work, it would be better if we can adapt POO assumptions to HOO,
since in our experience, HOO outperforms HCT in most situations as shown in Section 2.4.

As we already mentioned that using the optimism in the face of uncertainty principle for the
exploration phase is not optimal for the optimization purpose, and that methods based on best
arm identification are preferred. We thus intend to propose new algorithms where the exploration
phase will be using best arm identification, and we are particularly interested in hybrid approaches
of hierarchical optimization and Bayesian optimization, see for example Contal et al. 2015.

31



Acknowledgement

The internship opportunity I had with team SequeL at Inria Lille was a great chance for learning
and career development. I feel very lucky to be part of this team for 5 months, and I am also
grateful for having a chance to meet so many wonderful people who led me through this internship
period.

Bearing in mind, I would like to express my special thanks to Prof. Philippe, without whom I
would not have the chance to have contact with the team.

I express my deepest gratitude to my supervisors Emilie and Michal, for taking many time in
useful advice and discussion for my internship. I choose this moment to acknowledge their guidance
gratefully.

It is my radiant sentiment to place on record my best regards to Alessandro, Jérémie, Odalric,
Daniil, Romaric, Olivier, James, Ralph, Matteo, Merwan, Lilian, Daniele, Nicolas, Ronan, Jean-
Bastien, Julien, Florian, Juliia and Georgios for their welcome and precious guidance which were
extremely valuable for my study.

References

J.-Y. Audibert, S. Bubeck, and R. Munos. Best arm identification in multi-armed bandits. In
Proceedings of the 23th Annual Conference on Computational Learning Theory (COLT), 2010.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning Research, 47(2):235–256, 2002.

P. Auer, R. Ortner, and C. SzepesvÃąri. Improved rates for the stochastic continuum-armed ban-
dit problem. In Proceedings of the 20th Annual Conference on Computational Learning Theory
(COLT), pages 454–468, 2007.

M. G. Azar, A. Lazaric, and E. Brunskill. Online stochastic optimization under correlated bandit
feedback. In International Conference on Machine Learning (ICML), pages 1557–1565, 2014.

J. Bergstra and B Yoshua. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13:281–305, 2012.

C. M. Bishop. Pattern Recognition and Machine Learning, volume 4. Springer Science+ Business
Media, LLC, 2006.

L Bottou. Stochastic learning. Advanced Lectures on Machine Learning, pages 146–168, 2004.

E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
Technical report, University of Bristish Columbia, 2010.

C. G. Broyden. The convergence of a class of double-rank minimization algorithms 1. general
considerations. IMA Journal of Applied Mathematics, 6(1):76–90, 1970.

S. Bubeck, R. Munos, G. Stoltz, and Szepesvári C. X-armed bandits. Machine Learning Research,
12:1587–1627, 2011.

32



C. Chang and C. Lin. LIBSVM : A Library for Support Vector Machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2:1–39, 2011.

E. Contal, C. Malherbe, and N. Vayatis. Optimization for gaussian processes via chaining. In NIPS
workshop on Bayesian Optimization, 2015.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20(3):273–297, 1995.

T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.

C. A. Floudas and P. M. Pardalos. Optimization in computational chemistry and molecular biology:
Local and global approaches. Nonconvex Optimization and Its Applications. Springer, 2000.

H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29(5):1189–1232, 2001.

V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified approach to fixed
budget and fixed confidence. In Neural Information Processing Systems (NIPS), 2012.

J.-B. Grill, M. Valko, and R. Munos. Black-box optimization of noisy functions with unknown
smoothness. In Neural Information Processing Systems (NIPS), 2015.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

M. Hoffman, B. Shahriari, and N. de Freitas. On correlation and budget constraints in model-
basedbandit optimization with application to automatic machine learning. In Proceedings of the
17th International Conference on Artificial Intelligence and Statistics (AIStats), 2014.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the lipschitz
constant. Journal of Optimzation Theory and Applications, 79(1):157–181, 1993.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13(4):455–492, 1998.

S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone. Pac subset selection in stochastic multi-armed
bandits. In International Conference on Machine Learning (ICML), 2012.

E. Kaufmann, O. Cappé, and A. Garivier. On bayesian upper conf. bounds for bandit problems. In
Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AIStats),
2012a.

E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: an asymptotically optimal finite-time
analysis. In International Conference on Algorithmic Learning Theory, 2012b.

B. Kennel. KDTREE 2: Fortran 95 and C++ software to efficiently search for near neighbors in a
multi-dimensional Euclidean space. arXiv preprint arXiv:0408067, 2004.

L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In Proceedings of the 17th European
Conference on Machine Learning (ECML), pages 282–293, 2006.

33



A. Krause and C. E. Guestrin. Near-optimal nonmyopic value of information in graphical models.
arXiv:1207.1394, 2012.

H. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the
presence of noise. Journal of Basic Engineering, 86:97–106, 1964.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

L. Li, K. Jamieson, G. A. Rostamizadeh, and A. Talwalkar. Efficient hyperparameter optimization
and infinitely many armed bandits. arXiv:1603.06560v1, 2016.

D. J. Lizotte. Practical bayesian optimization. PhD thesis, University of Alberta, 2008.

B. Matérn. Spatial variation. Springer-Verlag, 1960.

C. G. Moles, P. Mendes, and J. R. Banga. Parameter estimation in biochemical pathways: a
comparison of global optimization methods. Genome Research, 13(11):2467–2474, 2003.

J. Močkus, V Tiesis, and A Žilinskas. The application of bayesian methods for seeking the extremum.
In L. C. W. Dixon and G. P. Szegö, editors, Towards Global Optimisation, volume 2, pages 117–
128. Elsevier, 1978.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing sub-
modular set functions. Math. Prog., 14:265–294, 1978.

C. E. Rasmussen and C. Williams. Gaussian processes for machine learning. The MIT Press, 2006.

E. Rumelhart, E. Hinton, and J. Williams. Learning representations by back-propagating errors.
Nature, 323(6088):533–536, 1986.

E. Schapire. A brief introduction to boosting. In IJCAI International Joint Conference on Artificial
Intelligence, volume 2, pages 1401–1406, 1999.

J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to a change in one
element of a given matrix. The Annals of Mathematical Statistics, 21(1):124–127, 1950.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T Graepel, and D Hassabis. Mastering the
game of go with deep neuralnetworks and tree search. Nature, 529:484–489, 2016.

N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. aussian process optimization in the bandit
setting: No regret and experimental design. arXiv:0912.3995, 2009.

A. Verikas, A. Gelzinis, and M. Bacauskiene. Mining data with random forests: A survey and results
of new tests. Pattern Recognition, 44(2):330–349, 2011.

G. Wang and S. Shan. Review of metamodeling techniques in support of engineering design opti-
mization. Journal of Mechanical Design, 129(4):370–380, 2007.

W. T. Ziemba and R. G. Vickson. Stochastic optimization models in finance. World Scientific
Singapore, 2006.

34



Appendices

A Proof of Lemma 5

Proof. For all δ > 0, let xh,i(δ) be an arm of Ph,i s.t.,

f(xh,i(δ)) ≥ f∗h,i − δ = f∗ −∆h,i − δ. (3)

It follows that for all y ∈ Ph,i and all δ > 0,

f∗ − f(y) ≤ f∗ − f(xh,i(δ)) + max{f∗ − f(xh,i(δ)), l(xh,i(δ),y)} by Assumption 2
≤ ∆h,i + δ + max{∆h,i + δ, l(xh,i(δ),y)} by Eq. 3
≤ ∆h,i + δ + max{∆h,i + δ, diam(Ph,i)} by definition of the diameter

Now letting δ tends toward 0, we have for all y ∈ Ph,i,

f∗ − f(y) ≤ ∆h,i + max{∆h,i,diam(Ph,i)}
≤ cν1ρ

h + max{cν1ρ
h, ν1ρ

h} by Assumption 2

= max{2c, c+ 1}ν1ρ
h.

B Regret Analysis for HCT

Before starting the proof, we first fix some constants and introduce some additional notations as
required for the analysis.

• c1 := (ρ/(3ν))1/8, c := 2
√

1/(1− ρ);

• ∀1 ≤ h ≤ H(t) and t > 0, Ih(t) denotes the set of all nodes created by HCT at level h up to
step t;

• ∀1 ≤ h ≤ H(t) and t > 0, I+
h (t) denotes the subset of Ih(t) which contains only the internal

nodes;

• At each step t, (ht, it) denotes the node selected by the algorithm;

• Ch,i := {t = 1, · · · , n : (ht, it) = (h, i)};

• C+
h,i := Ch+1,2i−1 ∪ Ch+1,2i;

• th,i := maxt∈Ch,i t denotes the last time (h, i) has been selected;

• t̃h,i := maxt∈C+h,i
t denotes the last time when one of its children has been selected;

• th,i := min{t : Th,i(t) ≥ τh(t)} is the time when (h, i) is expanded.

35



Another important notion in the HCT algorithm is the threshold τh on the number of pulls
needed before a node at level h can be expanded. τh is chosed such that the two confidence terms
in Uh,i are roughly equivalent, that is,

νρh = c

√
log(1/δ̃(t+))

τh(t)
,

thus we choose,

τh(t) = dc
2 log(1/δ̃(t+))

ν2
ρ−2he.

Since t+ is defined as 2dlog(t)e, we have t ≤ t+ ≤ 2t. In addition, log is an increasing function, thus
we have,

c2

ν2
ρ−2h ≤ c2 log(1/δ̃(t))

ν2
ρ−2h ≤ τh(t) ≤ c2 log(2/δ̃(t))

ν2
ρ−2h, (4)

where the first inequality follows the fact that 0 < δ̃(t) ≤ 1
2 . Now we begin our analysis by bounding

the maximum depth of the trees constructed by HCT-iid.

Lemma 13. Given τh(t) for the expansion of nodes at depth h, the maximum depth Hmax(n) of the
tree Tn will be

Hmax(n) =
1

2(1− ρ)
log

(
nν2

c2ρ2

)
.

Proof. The deepest tree that can be constructed by HCT-iid is a linear tree, where at each level
one unique node is expanded which means |I+

h (n)| = 1 and |Ih(n)| = 2 for all h < H(n). Thus we
have,

n =

H(n)∑
h=0

∑
i∈Ih(n)

Th,i(n)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

Th,i(n)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

Th,i(th,i)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

τh(th,i) by definition of th,i

≥
H(n)−1∑
h=0

c2

ν2
ρ−2h by Eq. 4

≥ (cρ)2

ν2
ρ−2H(n)H(n) since h ≤ H(n)− 1

≥ (cρ)2

ν2
ρ−2H(n).

36



By solving this expression, we obtain

H(n) ≤ 1

2
log

(
nν2

c2ρ2

)
/ log(1/ρ)

≤ 1

2(1− ρ)
log

(
nν2

c2ρ2

)
follows the fact that log(1/ρ) ≥ 1− ρ

= Hmax(n).

We now introduce a high probability event Et under which the mean reward of all expanded
nodes is with a confidence interval of the empirical mean. For that purpose, we define at first the
set of all possible nodes in trees of maximum depth Hmax(t) as

Lt =
⋃

T :depth(T )≤Hmax(t)

Nodes(T ),

then we define the event as

Et =

∀(h, i) ∈ Lt,∀Th,i(t) = 1 . . . t : |µ̂h,i(t)− µh,i| ≤ c

√
log(1/δ̃(t))

Th,i(t)

 ,

and we have the following lemma.

Lemma 14. With c1 and c defined as in the beginning of this section, we have for any fixed time
step t,

P [Et] ≥ 1− δ

t6
.

Proof. We upper bound the probability that the complementary event Ect holds.

P [Ect ] ≤
∑

(h,i)∈Lt

t∑
Th,i(t)=1

P

|µ̂h,i(t)− µh,i| ≥ c
√

log(1/δ̃(t))

Th,i(t)

 union bound

≤
∑

(h,i)∈Lt

t∑
Th,i(t)=1

2 exp
(
−2c2 log(1/δ̃(t))

)
Chernoff-Hoeffding inequality

= 2 exp
(
−2c2 log(1/δ̃(t))

)
t|Lt|

= 2(δ̃(t))2c2t|Lt|

≤ 2(δ̃(t))2c2t2Hmax(t)+1

= 4t(δ̃(t))2c2
(
tν2

c2ρ2

) 1
2(1−ρ)

by Lemma 13

≤ 4t

(
δ

t
(ρ/(3ν))1/8)

8
1−ρ

)(
tν2(1− ρ)

4ρ2

) 1
2(1−ρ)

plug in the expression of c and c1

37



= 4t

(
δ

t

) 8
1−ρ ( ρ

3ν

) 1
1−ρ

t
1

2(1−ρ)

(
ν
√

1− ρ
2ρ

) 1
1−ρ

≤ 2

3
δt
−2ρ−13
2(1−ρ)

≤ δ

t6

Now that we have a high probability event, we consider of decomposing the regret of HCT-iid
into two terms depending on whether Et holds or not. Let us denote ∆t = f∗−rt, then we decompose
the regret as

Rn =
n∑
t=1

∆t =
n∑
t=1

∆t1Et +
n∑
t=1

∆t1Ect = REn +RE
c

n

We first bound the failing confidence term RE
c

n .

Lemma 15. With the same parameters c and c1, the regret of HCT-iid when confidence intervals
fail to hold is bounded as

RE
c

n ≤
√
n

with probability 1− δ/5n2.

Proof. We split the term into time steps from 1 to
√
n and the rest,

RE
c

n =
n∑
t=1

∆t1Ect =

√
n∑

t=1

∆t1Ect +
n∑

t=
√
n+1

∆t1Ect

The first term can be bounded trivially by
√
n since |∆t| ≤ 1, now we demonstrate that the

probability that the second term is non zero is bounded by δ
5n2 .

P

 n∑
t=
√
n+1

∆t1Ect > 0

 = P

 n⋃
t=
√
n+1

Ect


≤

n∑
t=
√
n+1

P [Ect ] union bound

≤
n∑

t=
√
n+1

δ

t6
by Lemma 14

≤
∫ ∞
√
n

δ

t6
dt

=
δ

5n5/2

≤ δ

5n2

38



Now we come back to the Theorem 11. We study the regret of HCT under events {Et} and
prove the following result,

Rn ≤ 2

√
2n log(

4n2

δ
) + 3

(
22d+6νdCρd

(1− ρ)1−d/2

) 1
d+2
(

log

(
2n

δ
8

√
3ν

ρ

)) 1
d+2

n
d+1
d+2

with probability 1− δ.

Proof. The proof is constructed in 3 steps.

Step 1: Decomposition of the regret. We start by further decomposing the instantaneous
regret into two terms,

∆t = f∗ − rt = f∗ − f(xht,it) + f(xht,it)− rt = ∆ht,it + ∆̂t,

the regret of HCT-iid when confidence intervals hold can thus be rewritten as

REn =
n∑
t=1

∆ht,it1Et +
n∑
t=1

∆̂t1Et ≤
n∑
t=1

∆ht,it1Et +
n∑
t=1

∆̂t = R̃En + R̂En. (5)

We notice that the sequence {∆̂t}nt=1 is a bounded martingale difference sequence since E
[
∆̂t|Ft−1

]
=

0 and |∆̂t| ≤ 1, we thus apply the Azuma’s inequality on this sequence,

R̂En ≤
√

2n log(4n2/δ) (6)

with probability 1− δ
4n2 .

Step 2: Preliminary bound on the regret of selected nodes and their parents. Now
we proceed with the bound of the first term R̃En. Let (h′, i′) ∈ Pt and (h

′′
, i
′′
) be the node which

immediately follow (h′, i′) in Pt. By definition of B-value and U -value, we have

Bh′,i′(t) ≤ max(Bh′+1,2i′−1(t), Bh′+1,2i′(t)) = Bh′′ ,i′′ (t) (7)

where the last equality follows the fact that the subroutine OptTraverse selects the node with the
largest B-value. By iterating the previous inequality along with the path Pt until the selected node
(ht, it) and its parent (hpt , i

p
t ), we obtain

∀(h′, i′) ∈ Pt, Bh′,i′(t) ≤ Bht,it(t) ≤ Uht,it(t),

∀(h′, i′) ∈ Pt − (ht, it), Bh′,i′(t) ≤ Bhpt ,ipt (t) ≤ Uhpt ,ipt (t).

Since the root, which is an optimal node, is in Pt, thus there exists at least one optimal node (h∗, i∗)
in Pt, thus we have

Bh∗,i∗(t) ≤ Uht,it(t), (8)
Bh∗,i∗(t) ≤ Uhpt ,ipt (t). (9)

39



Now we expand the Eq. 8 on both sides under Et. First we have

Uht,it(t) = µ̂ht,it(t) + νρht + c

√
log(1/δ̃(t+))

Tht,it(t)
(10)

≤ f(xht,it) + νρht + 2c

√
log(1/δ̃(t+))

Tht,it(t)
. (11)

And the same result holds for the parent of the selected node:

Uhpt ,i
p
t
(t) ≤ f(xhpt ,ipt ) + νρh

p
t + 2c

√
log(1/δ̃(t+))

Thpt ,i
p
t
(t)

. (12)

We now show that for any optimal node (h∗, i∗), Uh∗,i∗(t) is a valid upper bound on f∗:

Uh∗,i∗(t) = µ̂h∗,i∗(t) + νρh
∗

+ c

√
log(1/δ̃(t+))

Th∗,i∗(t)

≥ µ̂h∗,i∗(t) + νρh
∗

+ c

√
log(1/δ̃(t))

Th∗,i∗(t)
follows the fact that t+ ≥ t

≥ f(xh∗,i∗) + νρh
∗

since we are under Et
≥ f∗. by Assumption 2

If an optimal node (h∗, i∗) is a leaf, then Bh∗,i∗(t) = Uh∗,i∗(t) is also a valid upper bound on f∗.
Otherwise, there always exists a leaf which contains the optimum for which (h∗, i∗) is its ancestor.
Now if we propagate the bound backward from this leaf to (h∗, i∗) through Eq. 7, we have that
Bh∗,i∗(t) is still a valid upper bound on f∗. Thus for any optimal node (h∗, i∗), at time t under Et,
we have

Bh∗,i∗(t) ≥ f∗. (13)

Then if we combine this Eq. 13 with Eq. 8 and Eq. 11, we obtain

∆ht,it = f∗ − f(xht,it) ≤ νρht + 2c

√
log(1/δ̃(t+))

Tht,it(t)
. (14)

The same result holds for its parent,

∆hpt ,i
p
t

= f∗ − f(xhpt ,ipt ) ≤ νρ
hpt + 2c

√
log(1/δ̃(t+))

Thpt ,i
p
t
(t)

. (15)

Now we can still refine a bit these two expressions. The subroutine OptTraverse tells us that
HCT-iid only selects a node when Th,i(t) < τh(t). Thus by the definition of τht(t), we have

∆ht,it ≤ 3c

√
log(2/δ̃(t))

Tht,it(t)
. (16)

On the other side, the OptTraverse function tells us that Thpt ,ipt (t) ≥ τhpt (t), thus

∆hpt ,i
p
t
≤ 3νρh

p
t , (17)

which means that every selected node has a parent which is 3νρht−1-optimal.

40



Step 3: Bound on the cumulative regret. Now we come back to the term R̃En, and we split
it into different depths. Let 1 ≤ H̄ ≤ H(n) be a constant to be fixed later. We have

R̃En =

n∑
t=1

∆ht,it1Et

≤
H(n)∑
h=0

∑
i∈Ih(n)

n∑
t=1

∆h,i1(ht,it)=(h,i)1Et

≤
H(n)∑
h=0

∑
i∈Ih(n)

n∑
t=1

3c

√
log(2/δ̃(t))

Th,i(t)
1(ht,it)=(h,i) by Eq. 16

=
H̄∑
h=0

∑
i∈Ih(n)

n∑
t=1

3c

√
log(2/δ̃(t))

Th,i(t)
1(ht,it)=(h,i) +

H(n)∑
h=H̄+1

∑
i∈Ih(n)

n∑
t=1

3c

√
log(2/δ̃(t))

Th,i(t)
1(ht,it)=(h,i)

≤
H̄∑
h=0

∑
i∈Ih(n)

τh(t̄h,i)∑
s=1

3c

√
log(2/δ̃(t̄h,i))

s
+

H(n)∑
h=H̄+1

∑
i∈Ih(n)

Th,i(n)∑
s=1

3c

√
log(2/δ̃(t̄h,i))

s

≤
H̄∑
h=0

∑
i∈Ih(n)

∫ τh(t̄h,i)

1
3c

√
log(2/δ̃(t̄h,i))

s
ds+

H(n)∑
h=H̄+1

∑
i∈Ih(n)

∫ Th,i(n)

1
3c

√
log(2/δ̃(t̄h,i))

s
ds

≤
H̄∑
h=0

∑
i∈Ih(n)

6c

√
τh(t̄h,i) log(2/δ̃(t̄h,i)) +

H(n)∑
h=H̄+1

∑
i∈Ih(n)

6c

√
Th,i(n) log(2/δ̃(t̄h,i))

= 6c


H̄∑
h=0

∑
i∈Ih(n)

√
τh(t̄h,i) log(2/δ̃(t̄h,i))︸ ︷︷ ︸

(a)

+

H(n)∑
h=H̄+1

∑
i∈Ih(n)

√
Th,i(n) log(2/δ̃(t̄h,i))︸ ︷︷ ︸
(b)

 .

We now bound separately these two terms (a) and (b). Since t̄h,i ≤ n, we have

(a) ≤
H̄∑
h=0

∑
i∈Ih(n)

√
τh(n) log(2/δ̃(n)) ≤

H̄∑
h=0

|Ih(n)|
√
τh(n) log(2/δ̃(n)). (18)

We notice that the covering tree is binary tree, thus we have |Ih(n)| ≤ 2|Ih−1(n)|, and we recall
that HCT-iid only selects a node (ht, it) when its parent is 3νρht−1-optimal, thus by definition of
the near-optimality dimension for HCT, we have

|Ih(n)| ≤ |2Ih−1(n)| ≤ 2Cρ−d(h−1) (19)

where d is the near-optimality dimension. Now we come back to the term (a) and we obtain that

(a) ≤
H̄∑
h=0

2Cρ−d(h−1)
√
τh(n) log(2/δ̃(n))

41



=
H̄∑
h=0

2Cρ−d(h−1)

√
c2 log(2/δ̃(n))

ν2
ρ−2h log(2/δ̃(n)) by Eq. 4

= 2Cρd
c log(2/δ̃(n))

ν

H̄∑
h=0

ρ−h(d+1).

Therefore we can bound (a) as

(a) ≤ 2Cρd
c log(2/δ̃(n))

ν

ρ−H̄(d+1)

1− ρ
. (20)

Now we proceed to bound the second term (b). Using the Cauchy-Schwartz inequality, we have

(b) ≤

√√√√√ H(n)∑
h=H̄+1

∑
i∈Ih(n)

log(2/δ̃(t̄h,i))

√√√√√ H(n)∑
h=H̄+1

∑
i∈Ih(n)

Th,i(n) ≤

√√√√√n

H(n)∑
h=H̄+1

∑
i∈Ih(n)

log(2/δ̃(t̄h,i)), (21)

where we trivially bound the second square root by the totol number of pulls. Now we focus on the
first square root. Recall that HCT-iid only selects a node when Th,i(t) ≥ τh(t) for its parent, thus
we have Th,i(t̃h,i) ≥ τh(t̃h,i) and the following sequence of inequalities.

n =

H(n)∑
h=0

∑
i∈Ih(n)

Th,i(n)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

Th,i(n)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

Th,i(t̃h,i) t̃h,i well defined for i ∈ I+
h (n)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

τh(t̃h,i)

≥
H(n)−1∑
h=H̄

∑
i∈I+h (n)

τh(t̃h,i)

=

H(n)−1∑
h=H̄

∑
i∈I+h (n)

c2 log(1/δ̃(t̃+h,i)))

ν2
ρ−2h

≥
H(n)−1∑
h=H̄

∑
i∈I+h (n)

c2 log(1/δ̃(t̃+h,i)))

ν2
ρ−2H̄

=
c2ρ−2H̄

ν2

H(n)−1∑
h=H̄

∑
i∈I+h (n)

log(1/δ̃(t̃+h,i)))

42



=
c2ρ−2H̄

ν2

H(n)−1∑
h=H̄

∑
i∈I+h (n)

log(1/δ̃([max(t̄h+1,2i−1, t̄h+1,2i)]
+)) since t̃h,i = max(t̄h+1,2i−1, t̄h+1,2i)

=
c2ρ−2H̄

ν2

H(n)−1∑
h=H̄

∑
i∈I+h (n)

log(1/δ̃(max(t̄+h+1,2i−1, t̄
+
h+1,2i))) ∀t1, t2, [max(t1, t2)]+ = max(t+1 , t

+
2 )

=
c2ρ−2H̄

ν2

H(n)−1∑
h=H̄

∑
i∈I+h (n)

max(log(1/δ̃(t̄+h+1,2i−1)), log(1/δ̃(t̄+h+1,2i)))

≥ c2ρ−2H̄

ν2

H(n)−1∑
h=H̄

∑
i∈I+h (n)

log(1/δ̃(t̄+h+1,2i−1)) + log(1/δ̃(t̄+h+1,2i))

2

=
c2ρ−2H̄

ν2

H(n)∑
h=H̄+1

∑
i∈I+h−1(n)

log(1/δ̃(t̄+h,2i−1)) + log(1/δ̃(t̄+h,2i))

2
change of variables

=
c2ρ−2H̄

2ν2

H(n)∑
h=H̄+1

∑
i∈I+h (n)

log(1/δ̃(t̄+h,i)).

Here the last equality relies on the fact that for any h > 0, I+
h (n) covers all the internal nodes at

level h, thus its children cover Ih+1(n). Thus we obtain

H(n)∑
h=H̄+1

∑
i∈I+h (n)

log(1/δ̃(t̄+h,i)) ≤
2ν2ρ2H̄n

c2
. (22)

On the other hand, we have

(b) ≤

√√√√√n

H(n)∑
h=H̄+1

∑
i∈Ih(n)

log(2/δ̃(t̄h,i))

≤

√√√√√n

H(n)∑
h=H̄+1

∑
i∈Ih(n)

2 log(1/δ̃(t̄h,i))

≤

√√√√√n

H(n)∑
h=H̄+1

∑
i∈Ih(n)

2 log(1/δ̃(t̄+h,i)). since t̄h,i ≤ t̄+h,i

Now by plugging Eq. 22 into this expression, we obtain

(b) ≤ 2νρH̄n

c
. (23)

43



Now if we combine this Eq. 23 with Eq. 20, we have the following bound for R̃En:

R̃En ≤ 12ν

[
Cρd

c2 log(2/δ̃(n))

ν2

ρ−H̄(d+1)

1− ρ
+ ρH̄n

]
. (24)

We now choose H̄ to minimize this bound by equalizing the two terms in the sum, and we obtain

ρH̄ =

(
Cρdc2 log(2/δ̃(n))

n(1− ρ)ν2

) 1
d+2

, (25)

which after being plugged into Eq. 24 gives us

R̃En ≤
24ν

c

(
Cρdc2 log(2/δ̃(n))

(1− ρ)ν2

) 1
d+2

n
d+1
d+2 . (26)

Finally, combining this Eq. 26 with Eq. 6 and Lemma 15, we obtain

Rn ≤
√
n+

√
2n log(

4n2

δ
) +

12ν√
1/(1− ρ)

(
4Cρd

(1− ρ)2ν2

) 1
d+2
(

log

(
2n

δ
8

√
3ν

ρ

)) 1
d+2

n
d+1
d+2

=
√
n+

√
2n log(

4n2

δ
) + 3

(
22d+6νdCρd

(1− ρ)1−d/2

) 1
d+2
(

log

(
2n

δ
8

√
3ν

ρ

)) 1
d+2

n
d+1
d+2

≤ 2

√
2n log(

4n2

δ
) + 3

(
22d+6νdCρd

(1− ρ)1−d/2

) 1
d+2
(

log

(
2n

δ
8

√
3ν

ρ

)) 1
d+2

n
d+1
d+2

with probability 1− δ.

C Conditional Distributions of A Multivariate Gaussian Distribution

In this section we show how to compute the analytic formulae for mean and covariance of the
posterior distribution which is not trivial. Here, instead of calculating the conditional density
manually, we use the following trick.

Given a set of observations r = [r1, r2, . . . , rn]T evaluated over X = [x1,x2, . . . ,xn]T and a set

of new samples r∗ =
[
r
′
1, r

′
2, . . . , r

′
m

]T
evaluated over X∗ = [x′1,x

′
2, . . . ,x

′
m]T instead of one new

sample (we thus obtain more general formulae), the joint distribution is given by[
r
r∗

]
∼ N

(
0,
[

K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
.

Notice that for the sake of simplicity, we assume that we are in a zero-mean and noise-free setting. To
make the notations more readable, we denote Σ1,1 = K(X,X), Σ1,2 = K(X,X∗), Σ2,1 = K(X∗,X)
and Σ2,2 = K(X∗,X∗). Now we need to demonstrate the following expressions:

E [r∗|r] = ΣT
1,2Σ

−1
1,1r,

Var (r∗|r) = Σ2,2 −ΣT
1,2Σ

−1
1,1Σ1,2.

44



Proof. Let z = r∗ + Ar where A = −ΣT
1,2Σ

−1
1,1. Then we have

Cov(z, r) = Cov(r∗ + Ar, r)
= Cov(r∗, r) + Cov(Ar, r)

= ΣT
1,2 −ΣT

1,2Σ
−1
1,1Σ1,1.

z and r are uncorrelated, and since they are jointly normal, thus they are independent, and we have

E [r∗|r] = E [z−Ar|r]
= E [z|r]− E [Ar|r]
= E [z]− E [Ar|r]
= E [r∗ + Ar]−Ar
= E [r∗] + AE [r]−Ar

= ΣT
1,2Σ

−1
1,1r.

On the other hand, for the covariance matrix, we have,

Var (r∗|r) = Var (z−Ar|r)
= Var (z|r) + Var (Ar|r)−ACov(z,−r)− Cov(z,−r)AT

= Var (z|r)
= Var(z)

= Var(r∗ + Ar)

= Var(r∗) + AVar(r)AT + ACov(r, r∗) + Cov(r∗, r)AT

= Σ2,2 + AΣ1,1AT + AΣ1,2 + ΣT
1,2A

T

= Σ2,2 + ΣT
1,2Σ

−1
1,1Σ1,1Σ

−1
1,1Σ1,2 − 2ΣT

1,2Σ
−1
1,1Σ1,2

= Σ2,2 −ΣT
1,2Σ

−1
1,1Σ1,2.

45


	Introduction
	Multi-armed Bandit Problem
	Problem Formulation
	UCB Algorithm

	Hierarchical Optimization
	Hierarchical Optimistic Optimization
	HOO Algorithm
	Analysis

	Parallel Optimistic Optimization
	POO Algorithm
	Analysis
	Discussion

	High-Confidence Tree
	HCT Algorithm
	Analysis
	Discussion

	Comparison

	Bayesian Optimization
	The Bayesian Optimization Approach
	Priors over Functions
	Kernel Functions
	Acquisition Functions
	Probability of Improvement
	Expected Improvement
	GP-UCB
	Optimization of the Acquisition Function

	Discussion

	Implementations and Experiments
	Implementations
	Synthetic Results
	Applications to Hyper-parameter Optimization for Machine Learning
	General Setting
	Benchmark Strategies
	Evaluation Metrics
	Machine Learning Models
	Results


	Conclusion
	Acknowledgement
	Appendices
	Proof of Lemma 5
	Regret Analysis for HCT
	Conditional Distributions of A Multivariate Gaussian Distribution


