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Abstract. This report introduces a regression model for modeling the
relationship between histogram-valued data and a real-valued parame-
ter. It uses the theory of optimal transport, and especially the notion
of Wasserstein barycenter based on Wasserstein distance. We try to ap-
ply this technique to a real-life problem which is the sentiment analysis
problem.
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1 Introduction

Several research opportunities exist at the interaction of machine learning and
optimal transport (OT), as demonstrated by recent works carried out in Yamamoto-
Cuturi Laboratory. The goal of this nascent field is to use the optimal transport
geometry on probability distributions in a machine learning context, where prob-
ability distributions appear under the form of histograms of features and statis-
tical models.

Probability histograms play an crucial role in many different fields of com-
puter science, such as graphics, natural language processing, etc. The feature
space on which these probability distributions are supported can often be en-
dowed with a distance.

Optimal transport theory [14] proposes a natural way to define a distance
between probability histograms on features using a distance between features.
Intuitively, it sees probability histograms as different ways of piling up a certain
amount of dirt and quantifies the distance between two of them as the minimum
cost of turning one pile into the other. Thus, two histograms having only a small
difference in the optimal transport sense could be very dissimilar under usual
metrics such as L1, L2, etc.
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Since the physical interpretation of optimal transport distance, a.k.a.Wasserstein
distance, is totally different from usual metric, it also defines extremely different
ways to interpolate between histograms. These optimal transport interpolations,
a.k.a.Wasserstein barycenters, maybe particularly useful in histogram-valued re-
gression problem.

In a practical perspective, these interpolations can only find applications if
they are computationally tolerant. While direct approaches to carry out these
interpolations have been proven to be intractable by Agueh and Carlier [9], some
regularized versions have been proposed [2][10] to provide cheap computational
cost which makes them useful in real-life problems.

In this paper, we propose a Wasserstein distance-based regression model,
a.k.a.Wasserstein geodesic regression, on histogram-valued inputs, and try to
apply it on the sentiment analysis problem. That is to say, given a review text
on some kind of product, we try to predict the attitude of the writer towards
this product.

We start this report with some reminders on transportation theory and
Wasserstein distance in section 2. Then we propose a Wasserstein distance-based
regression method on histogram-valued data in section 3. Finally we try to deal
with the sentiment analysis problem using this regression model before conclud-
ing.

2 Background

2.1 Optimal Transport

A transportation problem [1] is the study of optimal transportation and allocation
of resources. For example, suppose that we have several suppliers, each with a
given amount of goods. They are required to supply several consumers, each with
a given limited capacity. For each supplier-consumer pair, the cost of shipping
a single unit of supplies is known. The problem is then to determine a flow to
ship the supplies in order to minimize the total cost of transportation.

This is indeed a bipartite network flow problem which can be formalized as
a linear programming problem. Let I be the set of suppliers, J be the set of
consumers and M = [mij ] be the matrix of cost of shipment. Let xi be the total
supply of the supplier i and yj be the total capacity of consumer j. We want to
find a flow F = [fij ] to minimize the overall cost, and the linear programming
problem associated can be thus formulated as,

min.
∑
i∈I
∑
j∈J mijfij

s.t. fij ≥ 0 i ∈ I, j ∈ J∑
i∈I fij = yj j ∈ J∑
j∈J fij ≤ xi i ∈ I.

(1)

The first constraint here allows only shipment from suppliers to consumer,
the second one forces the consumers to fill up all of their capacities and the last
one limits the supply sent by each supplier to its total amount.
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Remark 1. A reasonable condition is that we can always assume that
∑
j∈J yj ≤∑

i∈I xi, since we can always switch the role of what we call suppliers and what
we call consumers.

2.2 Earth Mover’s Distance

Feature distributions are widely used in many computer science domains. For
example, in image retrieval, we often have to deal with the one-dimensional dis-
tribution of image intensities and three-dimensional distribution of image colors.
It seems very important to define a distance between distributions so as to cope
with such problems . The EMD [4] is a measure to evaluate dissimilarity between
two multi-dimensional distributions in some feature space. A distance measure
between single features, called ground distance, is required and has to be chosen
by hand for each specific problem (it can be any distance in general).

In fact, a distribution can be considered as a set of clusters where each cluster
is represented by its mean or mode and its weight (the fraction of the distribution
that belongs to that cluster). Such a representation is called the signature of the
distribution. The transportation problem, which is presented previously, can be
naturally used for signature matching by defining one signature as suppliers and
other signature as consumers. Thus, the computation of the EMD can be based
on the solution to the transportation problem.

For instance, consider two signatures p = {(p1, wp1), · · · , (pm, wpm)}, where
pi is the cluster representative and wpi is the weight of the cluster, and q =
{(q1, wq1), · · · , (qn, wqn)}. Suppose that the ground distance matrix/cost matrix
M is also given. We want to find a flow F that minimize the overall cost. And
we can formulate this linear programming problem just like the transportation
problem where wpi corresponds to the supply xi and wqj corresponds to the
capacity yj in the previous subsection. We can then define the EMD.

Definition 1 (Earth Mover’s Distance).

EMD(p, q) :=

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

=

∑m
i=1

∑n
j=1 dijfij∑n

j=1 yj
(2)

where the denominator is a normalization factor to avoid favoring signatures
with smaller total weights.

Remark 2. The EMD is a true distance when the compared two distributions
have the same overall mass (integral). In that case, it is equivalent to the 1st
Wasserstein distance between two distributions.

The EMD extends naturally the notion of distance between single elements to
distance between distributions. It can be applied to more general variable-size
signatures, thus to histograms of features, contrary to other distances like L1

proposed in [5], L2 or L∞ proposed in [6] and a weighted version of L2 proposed
in [7].
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2.3 Sinkhorn Distance

The EMD defines a more powerful geometry to compare probabilities at the cost
of a heavy computational effort (at least in O(d3 log(d)) where d is the dimen-
sion of the histograms/signatures). The Sinkhorn distance is proposed by [2] to
overcome this problem.

Indeed, we can look at the optimal transport problem in an entropic per-
spective. Consider two probability vectors p and q in the simplex Σd := {x ∈
Rd+ | xT1d = 1} where 1d is the d-dimensional vector of ones. We can define the
so-called transport polytope of p and q,

U(p,q) := {T ∈ Rd×d+ | T1d = p, TT1d = q}. (3)

Remark 3. U(p,q) contains indeed all possible joint probabilities of (X,Y ) that
take values in {1, · · · , d}.

Given the ground distance matrix M , we can thus reformulate the optimal
transport problem as,

dM (p,q) := min
T∈U(p,q)

〈T,M〉 (4)

where 〈·, ·〉 is the dot-product.

Definition 2 (Sinkhorn Distance).

dM,α(p, q) := min
T∈Uα(p,q)

〈T,M〉 (5)

We compute in practice a regularized term called dual-Sinkhorn divergence
which is defined for all λ > 0,

dλM (p,q) :=
〈
Tλ,M

〉
(6)

where Tλ = arg minT∈U(p,q) 〈T,M〉 − 1
λh(T ).

2.4 Regularized Wasserstein Barycenters

An important notion to be determined in problems like histogram or probability
distribution regression is how to calculate the histograms barycenter.

With the previous definition, we can define the so called entropy regularized
OT distance or regularized Wasserstein distance between two histograms p and
q as,

W (p,q) := min
T∈U(p,q)

{
〈
Tλ,M

〉
+ γH(T )} (7)

where H(T ) is the negative entropy of T (contrary to h(T ) in the previous
subsection which is the entropy of T ), and thus γ is a positive regularization
parameter.

Following Agueh and Carlier’s definition of Wasserstein Barycenter [9] as
Fréchet means in a Wasserstein space, Cuturi and Doucet proposed in [8] a
way of computing the barycenter of s histograms (ps)s using the regularized
Wasserstein distance.
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Definition 3 (Regularized Wasserstein Barycenter). The barycentric map
P : Σs → Σd that associates to a vector λ ∈ Σs the barycenter of (ps)s with
weights λ is uniquely defined as,

P (λ) := arg min
p∈Σd

∑
s

λsW (p,ps). (8)

Remark 4. The uniqueness mentioned in the definition just above comes from
the strong convexity of the right-hand side of the equation.

3 Wasserstein Geodesic Regression

Now we come to our contributions in this section. Assume that we are given
a dataset ((t1, µ1), · · · , (tn, µn)) where ti are real values and µi are probability
distributions or histograms. Our objective is to find a geodesic gt which best
describes this dataset, i.e., intuitively, a geodesic such that each gti is close to
µi. Here we will present two possible parametrizations of gt.

3.1 Lagrangian Approach

In this first approach, we suppose that µi are probability distributions on Rd and
we use the squared Euclidean distance as ground metric. Following Seguy and
Cuturi’s approach [11], we consider generalized geodesics parametrized through a
basis probability measure σ on Rd and two velocity fields V1 and V2 in L2(σ,Rd)
defined on the support of σ,

gαt = (id− V1 + t(V1 + V2))#σ. (9)

The geodesic regression problem consists thus in minimizing,

n∑
i=1

W 2(µi, g
α
ti) (10)

over σ, V1 and V2.

Remark 5. We will not use this first approach in our experiments, we will only
use the method to be introduced in the next subsection.

3.2 Eulerian Approach

A more general approach that allows us to generalize to more cost functions other
than the square Euclidean distance and more general ground spaces other than
Rd. However, in this case, we will not have a closed formula for the parametriza-
tion as in the previous approach. We define a geodesic between two end measures
ν and η as the solutions of the convex problem,

gt(ν, η) = arg min
µ

(1− t)W (µ, ν) + tW (µ, η) (11)
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which refers to the Wasserstein barycenter problem [9] of two measures.

The geodesic regression problem consists in minimizing,

n∑
i=1

W 2(µi, gti(ν, η)) (12)

over ν and η.

3.3 Automatic Differentiation

In order to minimize the quantity in (12), we need to build a numerical scheme
upon gradient descent. Intuitively, we need to find a geodesic that best fits our
training set by adjusting the position of the two end measures.

Let’s define ε(ν, η) := W (µ, gt(ν, η)) , our goal is to compute the optimal
solution to problem,

arg min
ν,η

ε(ν, η). (13)

The energy of this problem is generally not convex. We thus have to recover
a stationary point of that energy through gradient descent. The gradient of ε
with respect to ν and η can be computed using the chain rule:

∇εν(ν, η) = [∂νgt(ν, η)]>∇W (µ, gt(ν, η)), (14)

∇εη(ν, η) = [∂ηgt(ν, η)]>∇W (µ, gt(ν, η)) (15)

where ∂νgt(ν, η) is the Jacobian of ν 7→ gt(ν, η), ∂ηgt(ν, η) is the Jacobian of
η 7→ gt(ν, η) and ∇W (p, q) is the gradient of the loss q 7→W (p, q).

The gradient of W (p, q) can be computed as,

∇W (p, q) = γ log(a) (16)

where a ∈ Rd is the left scaling produced by Sinkhorn’s fixed-point algorithm.

And finally, since the exact computation of the Jacobian above is impratical,
we can consider using an automatic differentiation approach.

4 Experiments

Sentiment analysis is a process of computationally identifying opinions expressed
in a piece of text, especially in order to determine whether the writer’s attitude
towards a particular topic, product, etc. is positive, negative, or neutral. In this
section, we try to deal with this real-life problem using the Eulerian method we
proposed in the previous section.

More precisely, our regression input will be some review texts and we want
to predict the score (from 1 to 5) of a given text using our model.
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Dataset and Pre-processing The dataset we use for sentiment analysis is
the review texts on laptops from Amazon.com. One can find these data on
http://times.cs.uiuc.edu/~wang296/Data/. And the main part of our im-
plementations is written in matlab.

Firstly, we need to parse these data into a suitable format including only
review texts and scores. We made two mat files, one with review texts and
anther one with scores in columns. We also preserved their order with respect
to each other.

Next, we need to convert these texts into bag-of-words. In this part, we need
to maintain the count for every word since later we need to normalize these
bag-of-words into probability histograms.

Remark 6. The bag-of-words model is a simplifying representation used in nat-
ural language processing and information retrieval (IR). In this model, a text
(such as a sentence or a document) is represented as the bag (multiset) of its
words, disregarding grammar and even word order but keeping multiplicity.

Word2vec Models Now, a Word2vec model is required to produce word em-
beddings for our data. Word2vec takes as its input a large corpus of text and
produces a high-dimensional space, with each unique word in the corpus being
assigned a corresponding vector in the space so that we can compute ground
distance between different review texts.

What we use in our experiments is a pre-trained Word2vec model which can
be found on https://code.google.com/archive/p/word2vec/. This model is
trained on part of Google News dataset (about 100 billion words). The model
contains 300-dimensional vectors for 3 million words and phrases. The phrases
were obtained using a simple data-driven approach described in [3].

With this pre-trained Word2vec model at hand, we can now create our own
dictionary. To do so, we need to create the set of words in the entire data. This
time, we do not need to keep the count for every single word. However, we can
remove all the punctuations and stop words as they are not meaningful in the
sentiment analysis sense. This step can also reduce significantly the size of our
training and testing data.

We can pass this dictionary to the pre-trained Word2vec model to obtain
real training and testing data. This part of implementations are encoded in
C++. Then we are ready to pre-compute the ground distance matrix. In our
implementations, we used two different distances: Euclidean distance and cosine
distance. The pre-computation of this distance matrix can largely accelerate our
experiments.

First Experiments Now that ground distance matrix has been computed, we
are ready to launch our first experiments. We first compute the Wasserstein
barycenter of texts with score 1 and texts with score 5. We obtain thus two end
measures denoted respectively ν and η. In these first experiments, we compute
our geodesic between these two end measure by discretizing it. Indeed, in our
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experiments, we choose t from 0 to 1 with a step of 0.025, then we compute for
each t, the solution of the convex problem (11). Then we need to project our
review texts on this geodesic to compute the overall error (12).

We got very poor results from these first experiments, almost 96% of review
texts are projected on the two end measures as we can see from Fig. 1 to Fig. 5.
Indeed, Fig. 1 represents distances between 20 randomly selected review texts
with score 1 and every discretized points on the geodesic, so as for Fig. 2 to
Fig. 5. We can see that texts of score 1 are mostly closer to the end measure
of score 1 and texts of score 5 are mostly closer to the end measure of score 5.
However, the evolution curve of texts of score 2, 3 and 4 are somehow too flat.

Next Step Since we gained very poor results from our first experiments, we can
now carry out the gradient descent scheme on the end measures as we mentioned
in the previous section. To do so, we need to implement an automatic differen-
tiation algorithm. This can be done using an existing library. Unfortunately,
my code is not totally compatible with these libraries, and I did not succeed in
rewriting my code finally.

5 Conclusion

In this report, we proposed a Wassertein geodesic regression model so as to
predict the writers’ attitude based on their review texts.

Performance The first results which only used a discretized geodesic between
two end measures seem to be very disappointing. A reasonable explanation of
the poor performance maybe the fact that we do not have a correct ground
metric. As we can see in Fig. 6, the cosine distance is not really meaningful for
our review texts.

Then I did not manage to implement a correct version of automatic differ-
entiation of the Jacobian. As a result, I was not able to carry out the numerical
scheme to adjust the geodesic which builds upon gradient descent, and thus
required the computation of the high-dimensional Jacobian of the barycenter
operators ν 7→ gt(ν, η) and η 7→ gt(ν, η).

Future Work As we mentioned above, using simply an usual ground metric
such as cosine distance or Euclidean distance may not be appropriate for our
problem. Thus a metric learning process on the ground metric can be conceivable.

Secondly, a proper implementation of algorithmic differentiation of the Jaco-
bian is required. With this tool at hand, we can then run real experiments using
gradient descent.

More tests on different kind of datasets may also be a good idea to see the
performance of our approach afterwards.

We talked a little about another approach which is the Lagrangian approach.
This can also be a possible way of solving our problem.
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Fig. 1. Distance between random selected review texts with score 1 and the geodesic

Fig. 2. Distance between random selected review texts with score 2 and the geodesic
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Fig. 3. Distance between random selected review texts with score 3 and the geodesic

Fig. 4. Distance between random selected review texts with score 4 and the geodesic
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Fig. 5. Distance between random selected review texts with score 5 and the geodesic

Fig. 6. Ground distances between randomly selected review texts, the first 20 texts are
texts of score 1, the next 20 texts are texts of score 2, etc.


