A SIMPLE DYNAMIC BANDIT ALGORITHM FOR HYPER-PARAMETER TUNING

Problem and Objectives

We treat the hyper-parameter tuning prob-
lem for supervised learning tasks.

= global optimisation task: min{ f(A) : A € Q};

3| (Y, §>(\n)(X))] measures the

generalization power:;

= goal: a simple, robust, (almost) parameter-free
bandit algorithm.

How and Why

How?

« We see the problem as a stochastic infinitely
many-armed bandit

= Beta-Bernoulli bandit model
« A Beta resevoir vy over the means of the arms

« A uniform prior Iy over the arms — posterior:
k
II; = igtl Beta(l + Sm', Nm — St,@' + 1)

= At each round, D-TTTS either samples a new
arm or re-samples a previous one, and runs
TTTS on the increasing set of arms

Why?

— TTTS is anytime for finitely-armed bandits

— The number of arms added by D-TTTS depends
on the difficulty of the task (the resevoir)

— e.g. if the resevoir is difficult (like Beta(5,1)),
the pseudo-arm o will be sampled more often

— D-TTTS does not need to fix the number of

arms sampled in advance, and naturally adapts to
the dificulty of the task
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Notation and Glossary

= {) is the hyper-parameter space

= A Is a hyper-parameter configuration

= gy IS a classifier

« ¢ is the cross-validation error in this work
" T, 2,
» O iS the parameter space

- ©; = (0 € ©6; > max; 0;] is the subset of arm
¢ being optimal

denote the true means

Recommendation Rule

We recommend the arm with the largest posterior
probability of being optimal:

p—

I, = arg max I1,,(6;).

1eA

Sampling Rule

17:

Input: (

Initialization: u; ~ vy, A = {u}; m = 1;

Sl, N1 = ()

while budget still available do

i1 ~ Vo3 A <= AU {1}

Sina1s N1 < 0 m+— m+1

Vi € .A, 0; ~ Beta(Sz- +1, N, — S; + 1)

IV = arg max, i=0....m Ui

if U(~ ([ 1])) > 5 then

while % £ 1) d

Vie A 0 ~ Beta(S- +1, N, — S; + 1)
I + argmax,___,, 0!

end while

T — 1)

end if

Y < evaluate arm /'V: X ~ Ber(Y)
Sry < Sy + X; Ny < Ny + 1
end while

Some Tricks

- Binarization trick: When a reward Y;; €

V), ~Ber(Y;;) € {0,1}.

0, 1] is observed, the algorithm is updated with a fake reward

« Order statistic trick: At time ¢, let £;_1 be the list of arms that have been efficiently sampled, we run
TTTS on the set L; 1 U {up} where g is a pseudo-arm with posterior distribution Beta(t — |£;1],1).

Experimental Setting

Classifier Hyper-parameter Type Bounds

SVM C R
ol R

Table: hyper-parameters to be tuned for UCI experiments.

Classifier Hyper-parameter

Type Bounds

MLP hidden layer size Integer |5, 50]
alpha R* 0,0.9]
learning rate init R 107°,1071]

Table: hyper-parameters to be tuned for MNIST experiments.

Results for HPO

Number of Iterations
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Number of Iterations
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Illustrations of Efficiently Sampled
Arms
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ocfficiently sampled arms for Beta(a, 1) resevoirs

@efficiently sampled arms for Beta(1l, ) resevoirs

@ cfliciently sampled arms for shifted Beta resevoirs
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