Machine Learner, Quant
AI Conference Deadlines: Stress Warning!
- UCB momentum Q-learning: Correcting the bias without forgetting.
Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. In Proceedings of the 38th International Conference on Machine Learning, Vienna, Austria (ICML 2021). [long presentation - 3.2% acceptance rate]
- Gamification of pure exploration for linear bandits.
Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal Valko. In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria (ICML 2020).
- Fixed-confidence guarantees for Bayesian best-arm identification.
Xuedong Shang, Rianne de Heide, Emilie Kaufmann, Pierre Ménard and Michal Valko. In Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, Palermo, Italy (AIStats 2020).
- General parallel optimization without a metric.
Xuedong Shang, Emilie Kaufmann, and Michal Valko, In Proceedings of the 30th International Conference on Algorithmic Learning Theory, Chicago, USA (ALT 2019).
TBA
- Stochastic bandits with vector losses: Minimizing \(\ell^\infty\)-norm of relative losses.
Xuedong Shang, Han Shao, and Jian Qian. In 15th European Workshop on Reinforcement Learning, Milan, Italy (EWRL 2022).
- A simple dynamic bandit algorithm for hyper-parameter tuning.
Xuedong Shang, Emilie Kaufmann, and Michal Valko. In 6th ICML Workshop on Automated Machine Learning, Long Beach, USA (ICML 2019 - AutoML).
- Adaptive black-box optimization got easier: HCT only needs local smoothness.
Xuedong Shang, Emilie Kaufmann, and Michal Valko. In 14th European Workshop on Reinforcement Learning, Lille, France (EWRL 2018).
- rlberry - A reinforcement learning library for research and education.
Omar Darwiche Domingues⁎, Yannis Flet-Berliac⁎, Edouard Leurent⁎, Pierre Ménard⁎, Xuedong Shang⁎, and Michal Valko, GitHub repository (2021).
- LinBAI.jl.
Xuedong Shang, GitHub repository (2021).
- Xuedong Shang, Emilie Kaufmann, and Michal Valko, Simple (dynamic) bandit algorithms for hyper-parameter optimization. Preprint (2019).
- Dominique Barbe, Alexandre Debant, Xuedong Shang, Time series clustering. Technical Report (2016).
- PhD Thesis: 10/2017-03/2021, Team SequeL (SCOOL), Inria Lille-Nord Europe, Lille, France, Méthodes Adaptatives pour l'Optimisation dans un Environnement Stochastique, under the supervison of Emilie Kaufmann & Michal Valko.
- Internship & Master Thesis: 02/2017-07/2017, Team SequeL, Inria Lille-Nord Europe, Lille, France, Hierarchical Bandits for Black-Box Optimization and Monte-Carlo Tree Search, under the supervison of Emilie Kaufmann & Michal Valko.
- Internship: 05/2016-07/2016, Yamamoto-Cuturi Lab., Graduate School of Informatics, Kyoto University, Kyoto, Japan, Optimal transport geometry for sentiment analysis, under the supervision of Marco Cuturi.
- Internship: 06/2015-07/2015, Team Magnet, Inria Lille-Nord Europe, Lille, France, Recommender system (in French), under the supervision of Marc Tommasi.
- PhD Defense, Lille, France, September 29, 2021.
- Talk at RIKEN AIP, Tokyo, Japan, December 17, 2020.
- Talk at Seminar of Inria SequeL Team, Lille, France, February 29, 2020.
- Talk at Huawei Noah Ark's Lab, Paris, France, October 17, 2019.
- Talk at PhD Students' Seminar of Inria SequeL Team, Lille, France, February 2, 2017.
- External Reviewer - NIPS 2017; ICML 2018, 2019, 2020; AIStats 2019
- Reviewer for Conferences - NeurIPS 2019*, 2020**, 2021, 2022; ICML 2021†, 2023; ICLR 2021, 2023; AutoML-Conf 2022
- Reviewer for Workshops - ICLR 2019 LLD Workshop; ICML 2021 AutoML Workshop
- Reviewer for Journals - Mathematics of Operations Research, Econometrica
- PC Member - ICML 2022**
- Organization Committee - RLSS 2019
- Volunteer - ICLR 2020, ICML 2020, NeurIPS 2020
* - top reviewer, ** - best/outstanding reviewer, † - expert reviewer